Environmental conditions influence the onset and severity of infection and disease. Stressful conditions during winter may weaken immune function and further compromise survival by means of hypothermia, starvation, or shock. To test the hypothesis that animals may use photoperiod to anticipate the onset of seasonal stressors and adjust immune function, we evaluated glucocorticoids and the distribution of blood leukocytes in Siberian hamsters (Phodopus sungorus) exposed to long day lengths (i.e., summer) or short day (SD) lengths (i.e., winter) at baseline and during acute stress. We also investigated the influence of photoperiod and acute stress on a delayed-type hypersensitivity response in the skin. SDs increased glucocorticoid concentrations and the absolute number of circulating blood leukocytes, lymphocytes, T cells, and natural killer cells at baseline in hamsters. During stressful challenges, it appears beneficial for immune cells to exit the blood and move to primary immune defense areas such as the skin, in preparation for potential injury or infection. Acute (2 h) restraint stress induced trafficking of lymphocytes and monocytes out of the blood. This trafficking occurred more rapidly in SDs compared to long days. Baseline delayed-type hypersensitivity responses were enhanced during SDs; this effect was augmented by acute stress and likely reflected more rapid redistribution of leukocytes out of the blood and into the skin. These results suggest that photoperiod may provide a useful cue by which stressors in the environment may be anticipated to adjust the repertoire of available immune cells and increase survival likelihood.
Human and rat pineal melatonin secretion decline with aging, whereas visceral fat and plasma insulin levels increase. Melatonin modulates fat metabolism in some mammalian species, so these aging-associated melatonin, fat and insulin changes could be functionally related. Accordingly, we investigated the effects of daily melatonin supplementation to male Sprague-Dawley rats, starting at middle age (10 months) and continuing into old age (22 months). Melatonin was added to the drinking water (92% of which was consumed at night) at a dosage (4 microg/ml) previously reported to attenuate the aging-associated decrease in survival rate in male rats, as well as at a 10-fold lower dosage. The higher dosage produced nocturnal plasma melatonin levels in middle-aged rats which were 15-fold higher than in young (4 months) rats; nocturnal plasma melatonin levels in middle-aged rats receiving the lower dosage were not significantly different from young or middle-aged controls. Relative (% of body wt) retroperitoneal and epididymal fat, as well as plasma insulin and leptin levels, were all significantly increased at middle age when compared to young rats. All were restored within 10 weeks to youthful (4 month) levels in response to both dosages of melatonin. Continued treatment until old age maintained suppression of visceral (retroperitoneal + epididymal) fat levels. Plasma corticosterone and total thyroxine (T4) levels were not significantly altered by aging or melatonin treatment. Plasma testosterone, insulin-like growth factor I (IGF-I) and total triiodothyronine (T3) decreased by middle age; these aging-associated decreases were not significantly altered by melatonin treatment. Thus, visceral fat, insulin and leptin responses to melatonin administration may be independent of marked changes in gonadal, thyroid, adrenal or somatotropin regulation. Since increased visceral fat is associated with increased insulin resistance, diabetes, and cardiovascular disease, these results suggest that appropriate melatonin supplementation may potentially provide prophylaxis or therapy for some prominent pathologies associated with aging.
Immune activation is implicated in the etiology of preterm labor, but little is known about macrophage number or distribution in the uterus or cervix at term. This study tested the hypothesis that macrophages migrate into the reproductive tract before the onset of parturition. Paraffin-embedded sections from the mid-uterine horn and cervix of C3/HeN mice on Days 15 and 18 of pregnancy, the day of birth (Day 19), and 1 day postpartum were stained with a pan-macrophage marker to analyze cell numbers and distribution. During pregnancy, uterine macrophages were dispersed in endometrium, usually associated with vasculature and subluminal epithelium. In myometrium, macrophages were clustered in stromal connective tissue; near term and postpartum, cells appeared to surround the muscle bundles. Total macrophage numbers were increased on Day 15 relative to those in nonpregnant controls, declined before birth, and increased postpartum. In the cervix, macrophages congregated in subepithelium, often perivascular or near ganglia. Macrophage numbers in the cervix peaked on Day 18, then declined to nonpregnant levels by the day after birth. Thus, macrophage numbers in the uterus were inversely related to those in the cervix. These findings raise the possibility that macrophages and their products may be involved in uterine contractility and cervical remodeling during the processes of parturition.
The Djungarian or Siberian hamster (Phodopus sungorus) is a seasonally breeding rodent in which maturation of gonadal function depends upon the photoperiod during rearing. It was hypothesized that the ability of short days to block testicular growth resulted from insufficient gonadotropin secretion during critical stages of development. This question was studied by measurement of serum concentrations of FSH, LH, PRL, and androgens by RIA systems validated for use in this species. Males reared from birth in long (16 h of light, 8 h of darkness) or short (10 h of light, 14 h of darkness) photoperiods were killed at 5- to 10-day intervals between 5 and 60 days of age. Regardless of photoperiod before 15 days of age, body and testes weights similarly increased. Serum concentrations of FSH and PRL gradually increased during this age period, although PRL concentrations were statistically higher in males under long days compared to those under short days. Circulating serum LH and androgen levels were high before 10 days of age, but decreased by 15-20 days of age in both photoperiods. Under long days, the period between 15 and 30 days of age was characterized by rapid body (1 g/day) and testicular (10-38 mg/day) growth, peak serum FSH concentrations (20-25 days), sustained elevation in serum LH and androgen concentrations, and further increases in serum PRL values. After 30 days of age, a reduced growth rate for body and testes occurred; serum FSH levels declined, while adult serum concentrations of LH, PRL, and androgens were attained. In contrast, hamsters exposed to short days from birth exhibited a slower rate of body and testicular growth by 20 days of age. Short days blocked peak FSH secretion and suppressed serum concentrations of LH and androgens after 20 days of age. PRL titers were significantly lower in short day compared to those in long day housed hamsters at all ages. These results support the hypothesis that the short day-induced suppression of gonadotropins and PRL secretion during development blocked gonadal maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.