Isoprenoids are synthesized in all living organisms and are incorporated into diverse classes of end-products that participate in a multitude of cellular processes relating to cell growth, differentiation, cytoskeletal function and vesicle trafficking. In humans, the non-sterol isoprenoids, farnesyl pyrophosphate and geranylgeranyl-pyrophosphate, are synthesized via the mevalonate pathway and are covalently added to members of the small G protein superfamily. Isoprenylated proteins have key roles in membrane attachment and protein functionality, have been shown to have a central role in some cancers and are likely also to be involved in the pathogenesis and progression of atherosclerosis and Alzheimer disease. This review details current knowledge on the biosynthesis of isoprenoids, their incorporation into proteins by the process known as prenylation and the complex regulatory network that controls these proteins. An improved understanding of these processes is likely to lead to the development of novel therapies that will have important implications for human health and disease.
Long-term, low-dose trimethoprim-sulfamethoxazole was associated with a decreased number of urinary tract infections in predisposed children. The treatment effect appeared to be consistent but modest across subgroups. (Australian New Zealand Clinical Trials Registry number, ACTRN12608000470392.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.