The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on SolarProbe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.
We discuss the gross morphological features of the cosmic ray electron spectrum from 200 MeV to 6 GeV as measured in eight of the nine years 1969–1977. We find no evidence that the solar magnetic field polarity change of 1970–1971 affected the relative modulation of electrons and protons. However, previously noted problems in explaining the variation of both the electron and proton modulation by one model can at least qualitatively be understood by allowing simultaneous variations in the diffusion coefficient and the boundary of the modulation region in a spherically symmetric solution of the Fokker‐Planck equation. This model also predicts a change in the radial gradient of protons from 1973 to 1974.
Ceramic matrix composites can offer clear potential for a variety of engineering applications where the temperature capabilities of conventional metals are exceeded. Continued mechanical characterisation is essential to gain an understanding of their associated damage and failure mechanisms across a wide range of representative temperatures. The present paper will report ongoing research to characterize the initiation of matrix cracking at room temperature under tensile stress and subsequent damage development under fatigue loading in a SiCf/SiC composite. Imaging and mechanical property data were obtained via in-situ loading within a scanning electron microscope. The temporal nature of damage development was also recorded through the selective employment of acoustic emission. Metrics to describe the spatial distribution of cracks, crack lengths and crack opening displacement under load will be presented. The inspections also provided detailed evidence of the associated crack closure phenomena. The understanding of matrix crack saturation and matrix/fibre interfacial mechanics will be explored, together with the implications for the use of X-ray tomographic inspection of engineering components during service. The potential for these emergent techniques as a basis for future CMC characterization, via automated image recognition and machine learning, will be highlighted.
The present paper will introduce the use of scanning electron microscope based, in-situ tensile testing as a method of detecting cracking in a SiCf/SiC CMC at room temperature. Small scale tensile specimens were prepared, but still sampling multiple longitudinal and transverse fibre tows. Monotonic loading was applied to initiate cracking, whilst contemporary time lapse imaging and retrospective digital image correlation recorded the development of these cracks at the specimen surface. Examples of strain localization, crack initiation and propagation will be presented for a plain gauge section specimen and single edge notched specimen. The critical combination of SEM imaging together with real time loading, in order to identify microscopic cracking in this CMC system, will be demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.