Transduction has been shown to play a significant role in the transfer of plasmid and chromosomal DNA in aquatic ecosystems. Such ecosystems contain a multitude of environmental factors, any one of which may influence the transduction process. It was the purpose of this study to show how one of these factors, particulate matter, affects the frequency of transduction. In situ transduction rates were measured in lake water microcosms containing either high or low concentrations of particulate matter. The microcosms were incubated in a freshwater lake in central Oklahoma. Transduction frequencies were found to be enhanced as much as 100-fold in the presence of particulates. Our results suggest that aggregations of bacteriophages and bacterial cells are stimulated by the presence of these suspended particulates. This aggregation increases the probability of progeny phages and transducing particles finding and infecting new host cells. Consequently, both phage production and transduction frequencies increase in the presence of particulate matter.
Background
Luminescent reporter proteins are vital tools for visualizing cells and cellular activity. Among the current toolbox of bioluminescent systems, only bacterial luciferase has genetically defined luciferase and luciferin synthesis pathways that are functional at the mammalian cell temperature optimum of 37 °C and have the potential for in vivo applications. However, this system is not functional in all cell types, including stem cells, where the ability to monitor continuously and in real-time cellular processes such as differentiation and proliferation would be particularly advantageous.
Results
We report that artificial subdivision of the bacterial luciferin and luciferase pathway subcomponents enables continuous or inducible bioluminescence in pluripotent and mesenchymal stem cells when the luciferin pathway is overexpressed with a 20–30:1 ratio. Ratio-based expression is demonstrated to have minimal effects on phenotype or differentiation while enabling autonomous bioluminescence without requiring external excitation. We used this method to assay the proliferation, viability, and toxicology responses of iPSCs and showed that these assays are comparable in their performance to established colorimetric assays. Furthermore, we used the continuous luminescence to track stem cell progeny post-differentiation. Finally, we show that tissue-specific promoters can be used to report cell fate with this system.
Conclusions
Our findings expand the utility of bacterial luciferase and provide a new tool for stem cell research by providing a method to easily enable continuous, non-invasive bioluminescent monitoring in pluripotent cells.
This chapter explores the history of the bioengineering advances that have been applied to common luciferase enzymes and the improvements that have been accomplished by this work. The primary focus is placed on firefly luciferase (FLuc), Gaussia luciferase (GLuc), Renilla luciferase (RLuc), Oplophorus luciferase (OLuc; NanoLuc), and bacterial luciferase (Lux). Beginning with the cloning and exogenous expression of each enzyme, their step-wise modifications are presented and the new capabilities endowed by each incremental advancement are highlighted. Using the historical basis of this information, the chapter concludes with a prospective on the overall impact these advances have had on scientific research and provides an outlook on what capabilities future advances could unlock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.