One of the most remarkable properties of word embeddings is the fact that they capture certain types of semantic and syntactic relationships. Recently, pre-trained language models such as BERT have achieved groundbreaking results across a wide range of Natural Language Processing tasks. However, it is unclear to what extent such models capture relational knowledge beyond what is already captured by standard word embeddings. To explore this question, we propose a methodology for distilling relational knowledge from a pre-trained language model. Starting from a few seed instances of a given relation, we first use a large text corpus to find sentences that are likely to express this relation. We then use a subset of these extracted sentences as templates. Finally, we fine-tune a language model to predict whether a given word pair is likely to be an instance of some relation, when given an instantiated template for that relation as input.
Please cite this article in press as: J. Derrac, S. Schockaert, Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning, Artificial Intelligence (2015), http://dx. AbstractCommonsense reasoning patterns such as interpolation and a fortiori inference have proven useful for dealing with gaps in structured knowledge bases. An important difficulty in applying these reasoning patterns in practice is that they rely on fine-grained knowledge of how different concepts and entities are semantically related. In this paper, we show how the required semantic relations can be learned from a large collection of text documents. To this end, we first induce a conceptual space from the text documents, using multi-dimensional scaling. We then rely on the key insight that the required semantic relations correspond to qualitative spatial relations in this conceptual space. Among others, in an entirely unsupervised way, we identify salient directions in the conceptual space which correspond to interpretable relative properties such as 'more fruity than' (in a space of wines), resulting in a symbolic and interpretable representation of the conceptual space. To evaluate the quality of our semantic relations, we show how they can be exploited by a number of commonsense reasoning based classifiers. We experimentally show that these classifiers can outperform standard approaches, while being able to provide intuitive explanations of classification decisions. A number of crowdsourcing experiments provide further insights into the nature of the extracted semantic relations.
We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework.
In this paper, we introduce a new annotated dataset which is aimed at supporting the development of NLP models to identify and categorize language that is patronizing or condescending towards vulnerable communities (e.g. refugees, homeless people, poor families). While the prevalence of such language in the general media has long been shown to have harmful effects, it differs from other types of harmful language, in that it is generally used unconsciously and with good intentions. We furthermore believe that the often subtle nature of patronizing and condescending language (PCL) presents an interesting technical challenge for the NLP community. Our analysis of the proposed dataset shows that identifying PCL is hard for standard NLP models, with language models such as BERT achieving the best results.
Cross-lingual word embeddings are becoming increasingly important in multilingual NLP. Recently, it has been shown that these embeddings can be effectively learned by aligning two disjoint monolingual vector spaces through linear transformations , using no more than a small bilingual dictionary as supervision. In this work, we propose to apply an additional transformation after the initial alignment step, which moves cross-lingual synonyms towards a middle point between them. By applying this transformation our aim is to obtain a better cross-lingual integration of the vector spaces. In addition, and perhaps surprisingly, the monolingual spaces also improve by this transformation. This is in contrast to the original alignment, which is typically learned such that the structure of the monolingual spaces is preserved. Our experiments confirm that the resulting cross-lingual embeddings outperform state-of-the-art models in both monolingual and cross-lingual evaluation tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.