SummaryThe evolution of the seed system provides enormous adaptability to the gymnosperms and angiosperms, because of the properties of dormancy, nutrient storage and seedling vigour. Many of the unique properties of seeds can be exploited in molecular farming applications, particularly where it is desirable to produce large quantities of a recombinant protein. Seeds of transgenic plants have been widely used to generate a raw material for the extraction and isolation of proteins and polypeptides, which can be processed into valuable biopharmaceuticals. The factors that control high-level accumulation of recombinant proteins in seed are reviewed in the following paragraphs. These include promoters and enhancers, which regulate transcript abundance. However, it is shown that subcellular trafficking and targeting of the desired polypeptides or proteins play a crucial role in their accumulation at economically useful levels. Seeds have proven to be versatile hosts for recombinant proteins of all types, including peptides or short and long polypeptides as well as complex, noncontiguous proteins like antibodies and other immunoglobulins. The extraction and recovery of recombinant proteins from seeds is greatly assisted by their dormancy properties, because this allows for long-term stability of stored products including recombinant proteins and a decoupling of processing from the growth and harvest cycles. Furthermore, the low water content and relatively low bioload of seeds help greatly in designing cost-effective manufacturing processes for the desired active pharmaceutical ingredient. The development of cGMP processes based on seed-derived materials has only been attempted by a few groups to date, but we provide a review of the key issues and criteria based on interactions with Food and Drug Administration and European Medicines Agency. This article uses 'case studies' to highlight the utility of seeds as vehicles for pharmaceutical production including: insulin, human growth hormone, lysozyme and lactoferrin. These examples serve to illustrate the preclinical and, in one case, clinical information required to move these plant-derived molecules through the research phase and into the regulatory pathway en route to eventual approval.
To develop an ideal blood clot imaging and targeting agent, a single-chain antibody (SCA) fragment based on a fibrin-specific monoclonal antibody, MH-1, was constructed and produced via secretion from Bacillus subtilis. Through a systematic study involving a series of B. subtilis strains, insufficient intracellular and extracytoplasmic molecular chaperones and high sensitivity to wall-bound protease (WprA) were believed to be the major factors that lead to poor production of MH-1 SCA. Intracellular and extracytoplasmic molecular chaperones apparently act in a sequential manner. The combination of enhanced coproduction of both molecular chaperones and wprA inactivation leads to the development of an engineered B. subtilis strain, WB800HM[pEPP]. This strain allows secretory production of MH-1 SCA at a level of 10 to 15 mg/liter. In contrast, with WB700N (a seven-extracellular-protease-deficient strain) as the host, no MH-1 SCA could be detected in both secreted and cellular fractions. Secreted MH-1 SCA from WB800HM[pMH1, pEPP] could be affinity purified using a protein L matrix. It retains comparable affinity and specificity as the parental MH-1 monoclonal antibody. This expression system can potentially be applied to produce other single-chain antibody fragments, especially those with folding and protease sensitivity problems.
Staphylokinase is a promising blood-clot dissolving agent for the treatment of patients suffering from a heart attack. It would be desirable to produce this protein in large quantities for biochemical characterization and clinical trials. Production of intact, biologically active staphylokinase from bacterial expression systems has been a challenge because of N-terminal microheterogeneity, plasmid instability, or low-production yield. By using a seven-extracellular-protease deficient Bacillus subtilis strain, WB700, intact staphylokinase can be produced via secretion. However, native staphylokinase gene (sak) in a high-copy number plasmid was found to be unstable in B. subtilis. To optimize the production and the stability of the expression vectors, both the promoter and the signal sequence of sak were replaced by B. subtilis promoters (P43, a constitutively expressed promoter; Pamy, a stationary-phase promoter; and PsacB, a sucrose-inducible promoter) and the levansucrase-signal sequence, respectively. This overcame the plasmid instability problem. To enhance transcription from the sacB promoter, degQ encoding a transcriptional activator for sacB and other protease genes was also installed in the expression vector. The use of WB700 as the expression host allowed enhanced production of staphylokinase from the sucrose-inducible plasmid without causing any obvious degradation of staphylokinase. Both the P43 and PsacB (with DegQ) promoters worked well. Over 90% of staphylokinase synthesized can be secreted effectively. With the optimization of both the culture media and the fermentation conditions, production of staphylokinase reached a level of 337 mg/L, and staphylokinase could be purified to homogeneity by a simple three-step purification scheme. Secreted staphylokinase did not show any N-terminal heterogeneity. This presents an attractive system for the production of staphylokinase in both high quality and quantity.
Current clinically approved thrombolytic agents have significant drawbacks including reocclusion and bleeding complications. To address these problems, a staphylokinase-based thrombolytic agent equipped with antithrombotic activity from hirudin was engineered. Because the N termini for both staphylokinase and hirudin are required for their activities, a Y-shaped molecule is generated using engineered coiled-coil sequences as the heterodimerization domain. This agent, designated HE-SAKK, was produced and assembled from Bacillus subtilis via secretion using an optimized co-cultivation approach. After a simple in vitro treatment to reshuffle the disulfide bonds of hirudin, both staphylokinase and hirudin in HE-SAKK showed biological activities comparable with their parent molecules. This agent was capable of targeting thrombin-rich fibrin clots and inhibiting clot-bound thrombin activity. The time required for lysing 50% of fibrin clot in the absence or presence of fibrinogen was shortened 21 and 30%, respectively, with HE-SAKK in comparison with staphylokinase. In plasma clot studies, the HE-SAKK concentration required to achieve a comparable 50% clot lysis time was at least 12 times less than that of staphylokinase. Therefore, HE-SAKK is a promising thrombolytic agent with the capability to target thrombin-rich fibrin clots and to minimize clot reformation during fibrinolysis.
BackgroundDiacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1), we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1–116)His6, with calculated molecular mass of 13,278 Da.ResultsBnDGAT1(1–116)His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1–116)His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisΔ13)-CoA over oleoyl (18:1cisΔ9)-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1–116)His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1–116)His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER.ConclusionCollectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.