Monitoring the dynamic chemical and thermal state of a cell during operation is crucial to making meaningful advancements in battery technology as safety and reliability cannot be compromised. Here we demonstrate the feasibility of incorporating optical fiber Bragg grating sensors inside commercial 18650 cells. By adjusting fiber morphologies, wavelength changes associated with both temperature and pressure are decoupled with high accuracy, and this allows for tracking of chemical events such as solid electrolyte interphase formation and structural evolution. Additionally, we demonstrate how multiple sensors can function as a microcalorimeter to monitor the heat generated by the cell. Resolving this heat in detail is not possible with conventional isothermal calorimetry and the importance of assessing the cell's heat capacity contribution is presented. Collectively, these findings offer a scalable solution for screening electrolyte additives, rapidly identifying the best formation processes of commercial batteries, and designing thermal battery management systems with enhanced safety.
Metal‐assisted etching is used in conjunction with block‐copolymer lithography to create ordered and densely‐packed arrays of high‐aspect‐ratio single‐crystal silicon nanowires with uniform crystallographic orientations. Nanowires with diameters and spacings down to 19 nm and 10 nm, respectively, are created as either continuous carpets or as carpets within trenches. Wires with aspect ratios up to 220 are fabricated, and capillary‐induced clustering of wires is eliminated through post‐etching critical point drying. The wires are single crystals with 〈100〉 axis directions. The distribution of wire diameters is narrow and closely follows the size distribution of the block copolymer, with a standard deviation of 3.12 nm for wires of mean diameters 22.06 nm. Wire arrays formed in carpets and in channels have hexagonal order with good fidelity to the block copolymer pattern. Fabrication of wires in topographic features demonstrates the ability to accurately control wire placement. Wire arrays made using this new process will have applications in the creation of arrays of photonic and sensing devices.
We report the extraordinary result of rapid fibre Bragg grating inscription in doped polymer optical fibres based on polymethyl methacrylate in only 7 ms, which is two orders of magnitude faster than the inscription times previously reported. This was achieved using a new dopant material, diphenyl disulphide, which was found to enable a fast, positive refractive index change using a low ultraviolet dose. These changes were investigated and found to arise from photodissociation of the diphenyl disulphide molecule and subsequent molecular reorganization. We demonstrate that gratings inscribed in these fibres can exhibit at least a 15 times higher sensitivity than silica glass fibre, despite their quick inscription times. As a demonstration of the sensitivity, we selected a highly stringent situation, namely, the monitoring of a human heartbeat and respiratory functions. These findings could permit the inscription of fibre Bragg gratings during the fibre drawing process for mass production, allowing cost-effective, single-use, in vivo sensors among other potential uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.