Pelagic primary production in Arctic seas has traditionally been viewed as biologically insignificant until after the ice breakup. There is growing evidence however, that under-ice blooms of pelagic phytoplankton may be a recurrent occurrence. During the springs of 2011 and 2012, we found substantial numbers (201–5713 cells m−3) of the large centric diatom (diameter >250 µm) Coscinodiscus centralis under the sea ice in the Canadian Arctic Archipelago near Resolute Bay, Nunavut. The highest numbers of these pelagic diatoms were observed in Barrow Strait. Spatial patterns of fatty acid profiles and stable isotopes indicated two source populations for C. centralis: a western origin with low light conditions and high nutrients, and a northern origin with lower nutrient levels and higher irradiances. Fatty acid analysis revealed that pelagic diatoms had significantly higher levels of polyunsaturated fatty acids (mean ± SD: 50.3±8.9%) compared to ice-associated producers (30.6±10.3%) in our study area. In particular, C. centralis had significantly greater proportions of the long chain omega-3 fatty acid, eicosapentaenoic acid (EPA), than ice algae (24.4±5.1% versus 13.7±5.1%, respectively). Thus, C. centralis represented a significantly higher quality food source for local herbivores than ice algae, although feeding experiments did not show clear evidence of copepod grazing on C. centralis. Our results suggest that C. centralis are able to initiate growth under pack ice in this area and provide further evidence that biological productivity in ice-covered seas may be substantially higher than previously recognized.
Linking production, transfer and subsequent bioavailability of nutritionally significant matter from phytoplankton to higher trophic levels is a fundamental aspect in understanding marine food webs. The plant–animal interface is of interest because of the highly variable transfer between producers and consumers, and the myriad of factors that influence it. Essential fatty acids (EFAs) are dietary nutrients that are necessary for normal function in all consumers, yet it remains unclear how efficiently they are transferred through marine food webs. We introduced a 13C-labelled carbon source to the cryptophyte Rhodomonas salina to quantify primary production of two omega-3 long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We investigated transfer and assimilation efficiencies of these EFAs from phytoplankton to the calanoid copepod Calanus finmarchicus in an 8-day feeding experiment. We found low production of both EFAs in R. salina. Assimilation efficiencies of both EFAs ranged from 5 to 15% throughout the experiment, remaining slightly higher on average for DHA. This was mirrored in more efficient trophic transfer of DHA (up to 28%, compared to 13% for EPA). These results add to previously scarce experiments empirically quantifying the assimilation and transfer efficiency of EFAs in a basic marine planktonic food chain.
Ice algae are critical components to the lipid-driven Arctic marine food web, particularly early in the spring. As little is known about these communities in multiyear ice (MYI), we aimed to provide a baseline of fatty acid (FA) and stable isotope signatures of sea-ice communities in MYI from the Lincoln Sea and compare these biomarkers to first-year ice (FYI). Significant differences in the relative proportions of approximately 25% of the identified FAs and significantly higher nitrogen stable isotope values (δ15N) in bottom-ice samples of FYI (δ15N = 6.4 ± 0.7%) compared to MYI (δ15N = 5.0 ± 0.4%) reflect different community compositions in the two ice types. Yet, the relative proportion of diatom- and dinoflagellate-associated FAs, as well as their bulk and most of the FA-specific carbon stable isotope compositions (δ13C) were not significantly different between bottom FYI (bulk δ13C: –28.4% to –26.7%, FA average δ13C: –34.4% to –31.7%) and MYI (bulk δ13C: –27.6% to –27.2%, FA average δ13C: –33.6% to –31.9%), suggesting at least partly overlapping community structures and similar biochemical processes within the ice. Diatom-associated FAs contributed, on average, 28% and 25% to the total FA content of bottom FYI and MYI, respectively, indicating that diatoms play a central role in structuring sea-ice communities in the Lincoln Sea. The differences in FA signatures of FYI and MYI support the view that different ice types harbor different inhabitants and that the loss of Arctic MYI will impact complex food web interactions with ice-associated ecosystems. Comparable nutritional quality of FAs, however, as indicated by similar average levels of polyunsaturated FAs in bottom FYI (33%) and MYI (28%), could help to ensure growth and reproduction of ice-associated grazers despite the shift from a MYI to FYI-dominated sea-ice cover with ongoing climate warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.