While the opportunities of ML and AI in healthcare are promising, the growth of complex data-driven prediction models requires careful quality and applicability assessment before they are applied and disseminated in daily practice. This scoping review aimed to identify actionable guidance for those closely involved in AI-based prediction model (AIPM) development, evaluation and implementation including software engineers, data scientists, and healthcare professionals and to identify potential gaps in this guidance. We performed a scoping review of the relevant literature providing guidance or quality criteria regarding the development, evaluation, and implementation of AIPMs using a comprehensive multi-stage screening strategy. PubMed, Web of Science, and the ACM Digital Library were searched, and AI experts were consulted. Topics were extracted from the identified literature and summarized across the six phases at the core of this review: (1) data preparation, (2) AIPM development, (3) AIPM validation, (4) software development, (5) AIPM impact assessment, and (6) AIPM implementation into daily healthcare practice. From 2683 unique hits, 72 relevant guidance documents were identified. Substantial guidance was found for data preparation, AIPM development and AIPM validation (phases 1–3), while later phases clearly have received less attention (software development, impact assessment and implementation) in the scientific literature. The six phases of the AIPM development, evaluation and implementation cycle provide a framework for responsible introduction of AI-based prediction models in healthcare. Additional domain and technology specific research may be necessary and more practical experience with implementing AIPMs is needed to support further guidance.
Objective To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. Design Systematic review. Data sources PubMed from 1 January 2018 to 31 December 2019. Eligibility criteria Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes. Review methods Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall). Results 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively. Conclusion Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice. Systematic review registration PROSPERO CRD42019161764.
Objectives: Missing data is a common problem during the development, evaluation, and implementation of prediction models. Although machine learning (ML) methods are often said to be capable of circumventing missing data, it is unclear how these methods are used in medical research. We aim to find out if and how well prediction model studies using machine learning report on their handling of missing data. Study design and setting:We systematically searched the literature on published papers between 2018 and 2019 about primary studies developing and/or validating clinical prediction models using any supervised ML methodology across medical fields . From the retrieved studies information about the amount and nature (e.g. missing completely at random, potential reasons for missingness) of missing data and the way they were handled were extracted.Results: We identified 152 machine learning-based clinical prediction model studies. A substantial amount of these 152 papers did not report anything on missing data (n = 56/152). A majority (n = 96/152) reported details on the handling of missing data (e.g., methods used), though many of these (n = 46/96) did not report the amount of the missingness in the data. In these 96 papers the authors only sometimes reported possible reasons for missingness (n = 7/96) and information about missing data mechanisms (n = 8/96). The most common approach for handling missing data was deletion (n = 65/96), mostly via complete-case analysis (CCA) (n = 43/96). Very few studies used multiple imputation (n = 8/96) or built-in mechanisms such as surrogate splits (n = 7/96) that directly address missing data during the development, validation, or implementation of the prediction model. Conclusion:Though missing values are highly common in any type of medical research and certainly in the research based on routine healthcare data, a majority of the prediction model studies using machine learning does not report sufficient information on the presence and handling of missing data. Strategies in which patient data are simply omitted are unfortunately the most often used methods, even though it is generally advised against and well known that it likely causes bias and loss of analytical power in prediction model development and in the predictive accuracy estimates. Prediction model researchers should be much more aware of alternative methodologies to address missing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.