Road crossings can act as barriers to the movement of stream fishes, resulting in habitat fragmentation, reduced population resilience to environmental disturbance and higher risks of extinction. Strategic barrier removal has the potential to improve connectivity in stream networks, but managers lack a consistent framework for determining which projects will most benefit target species. The objective of this study is to develop a method for identifying and prioritizing action on road crossings in order to restore stream network connectivity. We demonstrate the method using a case study from the Pine‐Popple watershed in Wisconsin. First, we propose a new metric for quantifying stream connectivity status for stream‐resident fish. The metric quantifies the individual and cumulative effects of barriers on reach and watershed level connectivity, while accounting for natural barriers, distance‐based dispersal limitations and variation in habitat type and quality. We conducted a comprehensive field survey of road crossings in the watershed to identify barriers and estimate replacement costs. Of the 190 surveyed road crossings, 74% were determined to be barriers to the movement of at least one species or life stage of fish, primarily due to high water velocity, low water depth or outlet drops. The results of the barrier removal prioritization show that initial projects targeted for mitigation create much greater improvements in connectivity per unit cost than later projects. Benefit–cost curves from this type of analysis can be used to evaluate potential projects within and among watersheds and minimize overall expenditures for specified restoration targets. Copyright © 2014 John Wiley & Sons, Ltd.
In general, fish residing in rivers differ from fish residing in lakes in their mercury (Hg) isotope ratios. Specifically, fish residing in lakes typically show enriched values for the isotope ratios of δ202Hg (mass-dependent fractionation of isotope 202Hg) and Δ199Hg (mass-independent fractionation of isotope 199Hg) compared with fish residing in rivers, because photochemical effects acting on Hg isotope ratios are stronger in lakes than in rivers. Whole-fish determinations of Hg isotope ratios in age-0 and adult (ages 4–11) walleye (Sander vitreus) caught in the Fox River, the main tributary to lower Green Bay of Lake Michigan, were dissimilar. Age-0 fish exhibited a river signature for δ202Hg and Δ199Hg, with means equal to 0.00 and 0.26‰, respectively. Significantly elevated levels of δ202Hg and Δ199Hg were observed in adult fish, indicating that adult fish primarily resided in the bay. Our results implied that the Fox River serves as a nursery area for juvenile walleye in the Fox River–lower Green Bay ecosystem. Moreover, corrections for photochemical fractionation of δ202Hg revealed that age-0 and adult walleye shared the same source of Hg in this ecosystem. In addition, Hg isotope ratios did not significantly differ between the sexes of adult walleye, suggesting that these ratios did not fractionate during the Hg elimination process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.