Elk (Cervus elaphus) in the Greater Yellowstone Ecosystem alter patterns of aggregation, habitat selection, vigilance, and foraging in the presence of wolves (Canis lupus). Antipredator behaviors like these can reduce predation risk but are also likely to carry costs. Data from five elk populations studied for 16 site years showed that progesterone concentrations (from 1489 fecal samples) declined with the ratio of elk to wolves. In turn, progesterone concentrations were a good predictor of calf recruitment in the subsequent year. Together, these data suggest that wolves indirectly affect the reproductive physiology and the demography of elk through the costs of antipredator behavior.
Neonatal survival and juvenile recruitment are crucial to maintaining viable elk (Cervus elaphus) populations. Neonate survival is known to be influenced by many factors, including bed‐site selection. Although neonates select the actual bed‐site location, they must do so within the larger calf‐rearing area selected by the mother. As calves age, habitat selection should change to meet the changing needs of the growing calf. Our main objectives were to characterize habitat selection at 2 spatial scales and in areas with different predator assemblages in New Mexico. We evaluated bed‐site selection by calves and calf‐rearing area selection by adult females. We captured 108 elk calves by hand and fitted them with ear tag transmitters in two areas in New Mexico: the Valle Vidal and Blue Range Wolf Recovery Area. In both study areas, we found that concealing cover structure and distance to that cover influenced bed‐site selection of young calves (i.e., <2 weeks of age). Older calves (i.e., 3–10 weeks of age) still selected areas in relation to distance to cover, but also preferred areas with higher visibility. At the larger spatial scale of calf‐rearing habitat selection by the adult female, concealing cover (e.g., rocks, shrubs, and logs) and other variables important to the hiding calves were still in the most supported models, but selection was also influenced by forage availability and indices of forage quality. Studies that seek to obtain insight into microhabitat selection of ungulate neonates should consider selection by the neonate and selection by the adult female, changes in selection as neonates age, and potential selection differences in areas of differing predation risk. By considering these influences together and at multiple scales, studies can achieve a broader understanding of neonatal ungulate habitat requirements. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Considering advances in noninvasive genetic sampling and spatially explicit capture-recapture (SECR) models, the New Mexico Department of Game and Fish sought to update their density estimates for American black bear (Ursus americanus) populations in New Mexico, USA, to aide in setting sustainable harvest limits. We estimated black bear density in the Sangre de Cristo, Sandia, and Sacramento Mountains, New Mexico, 2012-2014. We collected hair samples from black bears using hair traps and bear rubs and used a sex marker and a suite of microsatellite loci to individually genotype hair samples. We then estimated density in a SECR framework using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We sampled the populations using 554 hair traps and 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 male, 358 female) individuals. Our density estimates varied from 16.5 bears/100 km 2 (95% CI ¼ 11.6-23.5) in the southern Sacramento Mountains to 25.7 bears/100 km 2 (95% CI ¼ 13.2-50.1) in the Sandia Mountains. Overall, detection probability at the activity center (g0) was low across all study areas and ranged from 0.00001 to 0.02. The low values of g0 were primarily a result of half of all hair samples for which genotypes were attempted failing to produce a complete genotype. We speculate that the low success we had genotyping hair samples was due to exceedingly high levels of ultraviolet (UV) radiation that degraded the DNA in the hair. Despite sampling difficulties, we were able to produce density estimates with levels of precision comparable to those estimated for black bears elsewhere in the United States. Ó 2018 The Wildlife Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.