Tropical reefs have been subjected to a range of anthropogenic pressures such as global climate change, overfishing and eutrophication that have raised questions about the prominence of macroalgae on tropical reefs, whether they pose a threat to biodiversity, and how they may influence the function of tropical marine ecosystems. We synthesise current understanding of the structure and function of tropical macroalgal reefs and how they may support various ecosystem goods and services. We then forecast how key stressors may alter the role of macroalgal reefs in tropical seascapes of the Anthropocene. High levels of primary productivity from tropical canopy macroalgae, which rivals that of other key producers (e.g., corals and turf algae), can be widely dispersed across tropical seascapes to provide a boost of secondary productivity in a range of biomes that include coral reefs, and support periodic harvests of macroalgal biomass for industrial and agricultural uses. Complex macroalgal reefs that comprise a mixture of canopy and understorey taxa can also provide key habitats for a diverse community of epifauna, as well as juvenile and adult fishes that are the basis for important tropical fisheries. Key macroalgal taxa (e.g., Sargassum) that form complex macroalgal reefs are likely to be sensitive to future climate change. Increases in maximum sea temperature, in particular, could depress biomass production and/or drive phenological shifts in canopy formation that will affect their capacity to support tropical marine ecosystems. Macroalgal reefs can support a suite of tropical marine ecosystem functions when embedded within an interconnected mosaic of habitat types. Habitat connectivity is, therefore, essential if we are to maintain tropical marine biodiversity alongside key ecosystem goods and services. Consequently, complex macroalgal reefs should be treated as a key ecological asset in strategies for the conservation and management of diverse tropical seascapes. A plain language summary is available for this article.
Canopy-forming macroalgae can construct extensive meadow habitats in tropical seascapes occupied by fishes that span a diversity of taxa, life-history stages and ecological roles. Our synthesis assessed whether these tropical macroalgal habitats have unique fish assemblages, provide fish nurseries and support local fisheries. We also applied a meta-analysis of independent surveys across 23 tropical reef locations in 11 countries to examine how macroalgal canopy condition is related to the abundance of macroalgal-associated fishes. Over 627 fish species were documented in tropical 2 | FULTON eT aL. 1 | INTRODUC TI ON Conservation and management of fish biodiversity requires an understanding of the habitats needed to support and replenish all of the species in a region of interest. While some species may be uniquely linked to a certain habitat type, many fish taxa follow a triphasic life cycle, where planktonic larvae settle into an initial habitat before migrating to different habitats as juveniles and/or adults. Moreover, adult fishes often move among habitats over daily or longer time scales to fulfil foraging or reproductive activities. Characterization of a fauna according to surveys within a single habitat type, therefore, can lead to a conclusion that a collection of species are dependent on that habitat type. A wider seascape perspective that tracks the abundance and activities of fishes across different patch habitat types is needed to reveal the full suite of connected habitats that sustain fish populations and com
Seaweed beds within tropical seascapes have received little attention as potential fish habitat, despite other vegetated habitats, such as seagrass meadows and mangroves, commonly being recognised as important nurseries for numerous fish species. In addition, studies of vegetated habitats rarely investigate fish assemblages across different macrophyte communities. Therefore, the aim of the present study was to investigate the role of tropical seaweed beds as fish habitat, particularly for juvenile fish, by comparing their fish assemblages with those of closely situated seagrass beds. Fish assemblages were assessed by visual census in belt transects, where fish were identified and their length estimated, and habitat variables were estimated for each transect. The abundance of juvenile fish in seaweed beds was twice as high as that in seagrass meadows, whereas there was no difference in total, subadult or adult fish abundance. In addition, the abundance of commercially important and coral reef-associated juveniles was higher in seaweed beds, as was fish species richness. Fish assemblages differed between habitats, with siganids being more common in seagrass meadows and juvenile Labridae and Serranidae more common in seaweed beds. These results highlight that tropical seaweed beds are important juvenile fish habitats and underscore the need to widen the view of the shallow tropical seascape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.