The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (<185 years), making it possible to distinguish between introduced and indigenous viruses readily. To establish their potential to cause severe or mild systemic symptoms in different native plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host–virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.
Strain-specific hypersensitive (HR) and extreme resistance (ER) phenotypes elicited in potato plants by three Potato virus Y (PVY) isolates in strain groups PVYO (BL and DEL3) and PVYD (KIP1) were studied. PVYO and PVYD isolates elicit HR genes Ny or putative Nd, respectively, and all three isolates elicit ER gene Ry. They were inoculated to 39 Australasian, European, or North American potato cultivars released over a 117-year period and harvested tubers were replanted. Both primary and secondary symptoms were recorded. Two European cultivars always developed ER following sap and graft inoculation and, thus, carried comprehensive PVY resistance gene Ry. One Australasian and two European cultivars always developed susceptible phenotypes and, thus, lacked genes Ry, Ny, and putative Nd. Sap inoculation with isolate KIP1 elicited localized HR (LHR) in 31 cultivars and both LHR and systemic HR (SHR) in three others; thus, all carried putative Nd. Isolates BL and DEL3 both elicited susceptible phenotypes in 11 of these 34 cultivars but LHR alone, SHR alone, or both LHR and SHR in the other 23 which, therefore, all carry Ny. With these two isolates, SHR expression ranged from very severe to very weak, with the greatest numbers of isolate–cultivar combinations occurring in the severe category with BL (n = 11) and moderate category (n = 12) with DEL3. Within the same isolate–cultivar combination, overall, SHR symptom expression was weaker with secondary than primary infection. With both primary and secondary infection, SHR expression was most severe with KIP1 and weakest with DEL3. Genes Ny and putative Nd were present in cultivars released between 1939 and 2010 or 1893 and 2010, respectively, occurring in cultivars from all three world regions. These findings have important implications concerning breeding new PVY-resistant potato cultivars, especially for countries lacking healthy seed potato stocks, or where subsistence farmers cannot afford them. An alternative to including gene Ry is incorporating as many strain-specific PVY resistance genes as possible.
Tedera (Bituminaria bituminosa (L.) C.H. Stirton vars albomarginata and crassiuscula) is being established as a perennial pasture legume in southwest Australia because of its drought tolerance and ability to persist well during the dry summer and autumn period. Calico (bright yellow mosaic) leaf symptoms occurred on occasional tedera plants growing in genetic evaluation plots containing spaced plants at Newdegate in 2007 and Buntine in 2010. Alfalfa mosaic virus (AlMV) infection was suspected as it often causes calico in infected plants (1,2) and infects perennial pasture legumes in local pastures (1,3). Because AlMV frequently infects Medicago sativa (alfalfa) in Australia and its seed stocks are commonly infected (1,3), M. sativa buffer rows were likely sources for spread by aphids to healthy tedera plants. When leaf samples from plants with typical calico symptoms from Newdegate (2007) and Buntine (2010) were tested by ELISA using poyclonal antisera to AlMV, Bean yellow mosaic virus (BYMV) and Cucumber mosaic virus (CMV), only AlMV was detected. When leaf samples from 864 asymptomatic spaced plants belonging to 34 tedera accessions growing at Newdegate and Mount Barker in 2010 were tested by ELISA, no AlMV, BYMV, or CMV were detected, despite presence of M. sativa buffer rows. A culture of AlMV isolate EW was maintained by serial planting of infected seed of M. polymorpha L. (burr medic) and selecting seed-infected seedlings (1,3). Ten plants each of 61 accessions from the local tedera breeding program were grown at 20°C in an insect-proof air conditioned glasshouse. They were inoculated by rubbing leaves with infective sap containing AlMV-EW or healthy sap (five plants each) using Celite abrasive. Inoculations were always done two to three times to the same plants. When both inoculated and tip leaf samples from each plant were tested by ELISA, AlMV was detected in 52 of 305 AlMV-inoculated plants belonging to 36 of 61 accessions. Inoculated leaves developed local necrotic or chlorotic spots or blotches, or symptomless infection. Systemic invasion was detected in 20 plants from 12 accessions. Koch's postulates were fulfilled in 12 plants from nine accessions (1 to 2 of 5 plants each), obvious calico symptoms developing in uninoculated leaves, and AlMV being detected in symptomatic samples by ELISA, inoculation of sap to diagnostic indicator hosts (2) and RT-PCR with AlMV CP gene primers. Direct RT-PCR products were sequenced and lodged in GenBank. When complete nucleotide CP sequences (666 nt) of two isolates from symptomatic tedera samples and two from alfalfa (Aq-JX112758, Hu-JX112759) were compared with that of AlMV-EW, those from tedera and EW were identical (JX112757) but had 99.1 to 99.2% identities to the alfalfa isolates. JX112757 had 99.4% identity with Italian tomato isolate Y09110. Systemically infected tedera foliage sometimes also developed vein clearing, mosaic, necrotic spotting, leaf deformation, leaf downcurling, or chlorosis. Later-formed leaves sometimes recovered, but plant growth was often stunted. No infection was detected in the 305 plants inoculated with healthy sap. To our knowledge, this is the first report of AlMV infecting tedera in Australia or elsewhere. References: (1) B. A. Coutts and R. A. C. Jones. Ann. Appl. Biol. 140:37, 2002. (2) E. M. J. Jaspars and L. Bos. Association of Applied Biologists, Descriptions of Plant Viruses No. 229, 1980. (3) R. A. C. Jones. Aust. J. Agric. Res. 55:757, 2004.
Alstroemeria, commonly known as Peruvian Lily, has high demand in the global market. The flowers are popularly known for their wide range of colours. Short postharvest life is a significant problem in Alstroemeria flowers. The objective of the study is to extend the vase life of flowers by application of pre-harvest foliar sprays. Foliar spray of Salicylic acid (50, 100 & 150 µM), Benzyl Adenine (50, 100 & 150 µM) and Gibberellic acid (200, 250 & 300 ppm) were applied twice during 2 weeks and 1 week before flower harvest with distilled water as control. The harvested flowers were placed in conical flasks containing distilled water as vase solution, and parameters like relative fresh weight, vase solution uptake, floret diameter, total chlorophyll content, ethylene evolution and vase life were recorded. The results showed that pre-harvest treatment of flowers with Gibberellic acid @ 300 ppm showed a significant increase in floret diameter (7.6 cm), total chlorophyll content (0.72 mg g -1 of fresh leaf), high relative fresh weight (88.50%) and high uptake of vase solution (2 g stem -1 day -1 ). Treatment with Benzyl adenine @ 150 µM has given favourable result by increasing the vase life of the flower up to 8 days followed by Gibberellic acid @ 300 ppm (7 days). Treatment with Salicylic acid did not show any favourable result. There was no significant difference in ethylene evolution pattern among treatments. From this experiment, it is concluded that pre-harvest treatment of flowers with Gibberellic acid @ 300 ppm and treatment of flowers with Benzyl adenine @ 150 µM showed positive results with treatment using Gibberellic acid @ 300 ppm as the best treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.