This paper presents a scheme for adaptively training the weights, in terms of varying the regularization parameter, in a neural network for the restoration of digital images. The flexibility of neural-network-based image restoration algorithms easily allow the variation of restoration parameters such as blur statistics and regularization value spatially and temporally within the image. This paper focuses on spatial variation of the regularization parameter.We first show that the previously proposed neural-network method based on gradient descent can only find suboptimal solutions, and then introduce a regional processing approach based on local statistics. A method is presented to vary the regularization parameter spatially. This method is applied to a number of images degraded by various levels of noise, and the results are examined. The method is also applied to an image degraded by spatially variant blur. In all cases, the proposed method provides visually satisfactory results in an efficient way.
This paper presents a quality evaluation of the point cloud codecs recently standardised by the MPEG committee. A subjective experiment was designed to evaluate these codecs performance in terms of bit rate versus perceived quality. Four laboratories with experience with such studies carried out the subjective evaluation. Although the exact setups of the different laboratories were not the same, the obtained MOS results exhibit a high correlation between them, confirming reliability and repeatability of the proposed assessment protocol. The study also confirmed MPEG V-PCC as a superior compression solution for static point clouds when compared to MPEG G-PCC. Finally, a benchmark of the most popular point cloud metrics was performed based on the subjective results. The point2plane metric using the mean square error as a distance measure was revealed to have the best correlation with subjective scores, closely followed by the point2point, also using the mean square error. As both metrics produce high correlation results, it can be concluded that they can be used for quality assessment of MPEG codecs.
In this study, we aimed to facilitate the current diagnostic assessment of glaucoma by analyzing multiple features and introducing a new cross-sectional optic nerve head (ONH) feature from optical coherence tomography (OCT) images. The data (n = 100 for both glaucoma and control) were collected based on structural, functional, demographic and risk factors. The features were statistically analyzed, and the most significant four features were used to train machine learning (ML) algorithms. Two ML algorithms: deep learning (DL) and logistic regression (LR) were compared in terms of the classification accuracy for automated glaucoma detection. The performance of the ML models was evaluated on unseen test data, n = 55. An image segmentation pilot study was then performed on cross-sectional OCT scans. The ONH cup area was extracted, analyzed, and a new DL model was trained for glaucoma prediction. The DL model was estimated using five-fold cross-validation and compared with two pre-trained models. The DL model trained from the optimal features achieved significantly higher diagnostic performance (area under the receiver operating characteristic curve (AUC) 0.98 and accuracy of 97% on validation data and 96% on test data) compared to previous studies for automated glaucoma detection. The second DL model used in the pilot study also showed promising outcomes (AUC 0.99 and accuracy of 98.6%) to detect glaucoma compared to two pre-trained models. In combination, the result of the two studies strongly suggests the four features and the cross-sectional ONH cup area trained using deep learning have a great potential for use as an initial screening tool for glaucoma which will assist clinicians in making a precise decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.