This paper presents a quality evaluation of the point cloud codecs recently standardised by the MPEG committee. A subjective experiment was designed to evaluate these codecs performance in terms of bit rate versus perceived quality. Four laboratories with experience with such studies carried out the subjective evaluation. Although the exact setups of the different laboratories were not the same, the obtained MOS results exhibit a high correlation between them, confirming reliability and repeatability of the proposed assessment protocol. The study also confirmed MPEG V-PCC as a superior compression solution for static point clouds when compared to MPEG G-PCC. Finally, a benchmark of the most popular point cloud metrics was performed based on the subjective results. The point2plane metric using the mean square error as a distance measure was revealed to have the best correlation with subjective scores, closely followed by the point2point, also using the mean square error. As both metrics produce high correlation results, it can be concluded that they can be used for quality assessment of MPEG codecs.
Light Field (LF) imaging is a plenoptic data collection method enabling a wide variety of image post-processing such as 3D extraction, viewpoint change and digital refocusing. Moreover, LF provides the capability to capture rich information about a scene, e.g., texture, geometric information, etc. Therefore, a quality assessment model for LF images is needed and poses significant challenges. Many LF Image Quality Assessment (LF-IQA) metrics have been recently presented based on the unique characteristics of LF images. The state-of-the-art objective assessment metrics have taken into account the image content and human visual system such as SSIM and IW-SSIM. However, most of these metrics are designed for images and video with natural content. Additionally, other models based on the LF characteristics (e.g., depth information, angle information) trade high performance for high computational complexity, along with them possessing difficulties of implementation for LF applications due to the immense data requirements of LF images. Hence, this paper presents a novel content-adaptive LF-IQA metric to improve the conventional LF-IQA performance that is also low in computational complexity. The experimental results clearly show improved performance compared to conventional objective IQA metrics, and we also identify metrics that are well-suited for LF image assessment. In addition, we present a comprehensive content-based feature analysis to determine the most appropriate feature that influences human visual perception among the widely used conventional objective IQA metrics. Finally, a rich LF dataset is selected from the EPFL dataset, allowing for the study of light field quality by qualitative factors such as depth (wide and narrow), focus (background or foreground) and complexity (simple and complex).
Light field (LF) imaging introduces attractive possibilities for digital imaging, such as digital focusing, post-capture changing of the focal plane or view point, and scene depth estimation, by capturing both spatial and angular information of incident light rays. However, LF image compression is still a great challenge, not only due to light field imagery requiring a large amount of storage space and a large transmission bandwidth, but also due to the complexity requirements of various applications. In this paper, we propose a novel LF adaptive content frame skipping compression solution by following a Wyner–Ziv (WZ) coding approach. In the proposed coding approach, the LF image is firstly converted into a four-dimensional LF (4D-LF) data format. To achieve good compression performance, we select an efficient scanning mechanism to generate a 4D-LF pseudo-sequence by analyzing the content of the LF image with different scanning methods. In addition, to further explore the high frame correlation of the 4D-LF pseudo-sequence, we introduce an adaptive frame skipping algorithm followed by decision tree techniques based on the LF characteristics, e.g., the depth of field and angular information. The experimental results show that the proposed WZ-LF coding solution achieves outstanding rate distortion (RD) performance while having less computational complexity. Notably, a bit rate saving of 53% is achieved compared to the standard high-efficiency video coding (HEVC) Intra codec.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.