Visual surveillance systems have been playing a vital role in human modern life with a large number of applications, ranging from remote home management, public security to traffic monitoring. The recent High Efficiency Video Coding (HEVC) scalable extension, namely SHVC, provides not only the compression efficiency but also the adaptive streaming capability. However, SHVC is originally designed for videos captured from generic scenes rather than from visual surveillance systems. In this paper, we propose a novel HEVC based surveillance scalable video coding (SSVC) framework. First, to achieve high quality inter prediction, we propose a long-term reference coding method, which adaptively exploits the temporal correlation among frames in surveillance video. Second, to optimize the SSVC compression performance, we design a quantization parameter adaptation mechanism in which the relationship between SSVC rate-distortion (RD) performance and the quantization parameter is statistically modeled by a fourth-order polynomial function. Afterwards, an appropriate quantization parameter is derived for frames at long-term reference position. Experiments conducted for a common set of surveillance videos have shown that the proposed SSVC significantly outperforms the relevant SHVC standard, notably by around 6.9% and 12.6% bitrate saving for the low delay (LD) and random access (RA) coding configurations, respectively while still providing a similar perceptual decoded frame quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.