Acute respiratory distress syndrome (ARDS) is defined as a syndrome of acute onset, with bilateral opacities on chest imaging and respiratory failure not caused by cardiac failure, leading to mild, moderate, or severe oxygenation impairment. The syndrome is most commonly a manifestation of sepsis-induced organ dysfunction, characterized by disruption of endothelial barrier integrity and diffuse lung damage. Imbalance between coagulation and inflammation is a predominant characteristic of ARDS, leading to extreme inflammatory response and diffuse fibrin deposition in vascular capillary bed and alveoli. Activated platelets, neutrophils, endothelial cells, neutrophil extracellular traps, microparticles, and coagulation proteases, participate in the complex process of immunothrombosis, which is a key event in ARDS pathophysiology. The present review is focused on the elucidation of immunothrombosis in ARDS and the potential therapeutic implications.
First, patients' serum Ang-2 levels are increased during severe sepsis and associated with disease severity. The strong relationship of serum Ang-2 with serum tumor necrosis factor-alpha suggests that the latter may participate in the regulation of Ang-2 production in sepsis. Second, inflammatory mediators reduce Ang-2 release from human lung microvascular endothelial cells, implying that this vascular bed may not be the source of increased Ang-2 in human sepsis.