Over the last few years, increased interest has arisen with respect to age-related tasks in the Computer Vision community. As a result, several "in-the-wild" databases annotated with respect to the age attribute became available in the literature. Nevertheless, one major drawback of these databases is that they are semi-automatically collected and annotated and thus they contain noisy labels. Therefore, the algorithms that are evaluated in such databases are prone to noisy estimates. In order to overcome such drawbacks, we present in this paper the first, to the best of knowledge, manually collected "in-the-wild" age database, dubbed AgeDB, containing images annotated with accurate to the year, noise-free labels. As demonstrated by a series of experiments utilizing state-of-the-art algorithms, this unique property renders AgeDB suitable when performing experiments on age-invariant face verification, age estimation and face age progression "in-the-wild".
Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: i. use a regressor to complete missing parts of one model using the other, ii. use the Gaussian Process framework to blend covariance matrices from multiple models. Thus we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.