Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models and their variants, despite their linear formulation, have been widely used for shape representation, while most of the recently proposed nonlinear approaches resort to intermediate representations, such as 3D voxel grids or 2D views. In this work, we introduce a novel graph convolutional operator, acting directly on the 3D mesh, that explicitly models the inductive bias of the fixed underlying graph. This is achieved by enforcing consistent local orderings of the vertices of the graph, through the spiral operator, thus breaking the permutation invariance property that is adopted by all the prior work on Graph Neural Networks. Our operator comes by construction with desirable properties (anisotropic, topologyaware, lightweight, easy-to-optimise), and by using it as a building block for traditional deep generative architectures, we demonstrate state-of-the-art results on a variety of 3D shape datasets compared to the linear Morphable Model and other graph convolutional operators.
While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Lehman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often informative for downstream tasks, suggesting that it is desirable to design GNNs capable of leveraging this important source of information. To this end, we propose a novel topologically-aware message passing scheme based on subgraph isomorphism counting. We show that our architecture allows incorporating domain-specific inductive biases and that it is strictly more expressive than the WL test. Importantly, in contrast to recent works on the expressivity of GNNs, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear complexity, while being able to disambiguate even hard instances of graph isomorphism. We extensively evaluate our method on graph classification and regression tasks and show state-of-the-art results on multiple datasets including molecular graphs and social networks.Preprint. Under review.
No abstract
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose Π-Nets, a new class of DCNNs. Π-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be efficiently implemented by hierarchical neural networks. We empirically demonstrate that Π-Nets are very expressive and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, Π-Nets produce state-of-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.