Conventional architectures will not efficiently scale a hundredfold to effectively utilize billion-transistor chips. A more efficient way of using the huge amount of real estate available is to integrate a high-performance processor and the DRAM main memory on the same die, an architecture called intelligent RAM, or IRAM.
Reconfigurable systems can offer the high spatial parallelism and fine-grained, bit-level resource control traditionally associated with hardware implementations, along with the flexibility and adaptability characteristic of software. While reconfigurable systems create new opportunities for engineering and delivering high-performance programmable systems, the traditional approaches to programming and managing computations used for hardware systems (e.g., Verilog, VHDL) and software systems (e.g., C, Fortran, Java) are inappropriate and inadequate for exploiting reconfigurable platforms. To address this need, we develop a stream-oriented compute model, system architecture, and execution patterns which can capture and exploit the parallelism of spatial computations while simultaneously abstracting software applications from hardware details (e.g., timing, device capacity, and microarchitectural implementation details) and consequently allowing applications to scale to exploit newer, larger, and faster hardware platforms. Further, we describe hardware and software techniques that make this late-bound platform mapping viable and efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.