Previous animal and clinical studies have shown that acupuncture is an effective alternative treatment in the management of hypertension, but the mechanism is unclear. This study investigated the proteomic response in the nervous system to treatment at the Taichong (LR3) acupoint in spontaneously hypertensive rats (SHRs). Unanesthetized rats were subject to 5-min daily acupuncture treatment for 7 days. Blood pressure was monitored over 7 days. After euthanasia on the 7th day, rat medullas were dissected, homogenized, and subject to 2D gel electrophoresis and MALDI-TOF analysis. The results indicate that blood pressure stabilized after the 5th day of acupuncture, and compared with non-acupoint treatment, Taichong-acupunctured rat’s systolic pressure was reduced significantly (P<0.01), though not enough to bring blood pressure down to normal levels. The different treatment groups also showed differential protein expression: the 2D images revealed 571±15 proteins in normal SD rats’ medulla, 576±31 proteins in SHR’s medulla, 597±44 proteins in medulla of SHR after acupuncturing Taichong, and 616±18 proteins in medulla of SHR after acupuncturing non-acupoint. In the medulla of Taichong group, compared with non-acupoint group, seven proteins were down-regulated: heat shock protein-90, synapsin-1, pyruvate kinase isozyme, NAD-dependent deacetylase sirtuin-2, protein kinase C inhibitor protein 1, ubiquitin hydrolase isozyme L1, and myelin basic protein. Six proteins were up-regulated: glutamate dehydrogenase 1, aldehyde dehydrogenase 2, glutathione S-transferase M5, Rho GDP dissociation inhibitor 1, DJ-1 protein and superoxide dismutase. The altered expression of several proteins by acupuncture has been confirmed by ELISA, Western blot and qRT-PCR assays. The results indicate an increase in antioxidant enzymes in the medulla of the SHRs subject to acupuncture, which may provide partial explanation for the antihypertensive effect of acupuncture. Further studies are warranted to investigate the role of oxidative stress modulation by acupuncture in the treatment of hypertension.
In the present study, we have investigated the effects of acupuncture on (1) serum protein expression that might have a beneficial effect on stroke patients and (2) the strength of limb muscles in stroke patients. A total of 35 acute ischemic stroke (IS) patients were divided into two groups, one receiving drug treatment alone and the other receiving electroacupuncture (EA) and drug treatment. EA treatment was performed on eight acupuncture points once a day for 10 consecutive days. Serum proteins were detected using a proteomics method based on two-dimensional gel electrophoresis, and the specificity of proteins was confirmed by Western blotting. Changes of limb muscle strength were measured using a modified Medical Research Council grading scale. After EA, SerpinG1 protein expression in serum was down-regulated while the expressions of gelsolin, complement component I, C3, C4B and beta-2-glycoprotein I proteins were up-regulated in patients. The changes of serum protein expression were further confirmed by Western blotting in a majority of the cases. The muscle strength of limbs was increased after EA in 18 patients. EA appears to be effective in regulating differential expression of multiple serum proteins involved in stroke, and also in enhancement of muscle strength recovery in acute IS patients despite an individual variation.
Hippocampal mossy fiber sprouting following training in the Morris water maze (MWM) is associated with spatial learning, memory and neural plasticity. The C-X-C chemokine receptor type 4 (CXCR4) is the main receptor for stromal cell-derived factor-1 (SDF-1), which is a chemokine that can regulate axonal elongation. This study aimed to investigate the relationship between the morphological plasticity of hippocampal formation and CXCR4 expression. A model of spatial learning and memory was established in rats by training using the MWM. Mossy fiber sprouting in the striatum oriens of the CA3 area of the hippocampus was found in trained rats by Neo-Timm's method. As shown by immunohistochemistry, the CXCR4 immunopositive neurons were distributed in all layers and areas of hippocampal formation. There were no differences among groups regarding the distribution or shape of the immunopositive neurons. However, the immunoreactive staining intensity was increased in trained rats as compared with the control rats. Both CXCR4 gene transcription and translation were significantly upregulated in the trained group as compared with the control group (P < 0.01). Morphological plasticity in the form of axonal sprouting in the hippocampal formation can be induced by enhanced spatial learning and memory activity, and CXCR4 mRNA and protein expression is upregulated, indicating a positive correlation between CXCR4 expression and axonal sprouting. Anat Rec, 295:121-126, 2012. V V C 2011 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.