BackgroundThere have been many efforts to develop efficient vaccines for the control of porcine reproductive and respiratory syndrome virus (PRRSV). Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved.ResultsIn all groups, the sample to positive (S/P) ratio of IDEXX ELISA and the virus neutralization (VN) titer remained negative until challenge. While viremia did not reduce in the vaccinated groups, the IDEXX-ELISA-specific immunoglobulin G increased more rapidly and to significantly greater levels 7 days after the challenge in all the vaccinated groups compared to the non-vaccinated groups (p < 0.05). VN titer was significantly different in the 106 PFU/mL PRRSV vaccine-inoculated and binary ethylenimine (BEI)-inactivated groups 22 days after challenge (p < 0.05). Consequently, the inactivated vaccines tested in this study provided weak memory responses with sequential challenge without any obvious active immune responses in the vaccinated pigs.ConclusionsThe inactivated vaccine failed to show the humoral immunity, but it showed different immune response after the challenge compared to mock group. Although the 106 PFU/mL-vaccinated and BEI-inactivated groups showed significantly greater VN titers 22 days after challenge, all the groups were already negative for viremia.
Destruction of dopaminergic neurons in the substantia nigra pars compacta (SNpc) is a common pathophysiology of Parkinson's disease (PD). Characteristics of PD patients include bradykinesia, muscle rigidity, tremor at rest and disturbances in balance. For about four decades, PD animal models have been produced by toxin-induced or gene-modified techniques. However, in mice, none of the gene-modified models showed all 4 major criteria of PD. Moreover, distinguishing between PD model pigs and normal pigs has not been well established. Therefore, we planned to produce a pig model for PD by chronic subcutaneous administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), neurotoxin. Changes in behavioral patterns of pigs were thoroughly evaluated and a new motor scoring system was established for this porcine model that was based on the Unified Parkinson's Disease Rating Scale (UPDRS) in human PD patients. In summary, this motor scoring system could be helpful to analyze the porcine PD model and to confirm the pathology prior to further examinations, such as positron emission tomography-computed tomography (PET-CT), which is expensive, and invasive immunohistochemistry (IHC) of the brain.
The emergence and rapid spread of the potentially fatal coronavirus disease 2019, caused due to infection by severe acute respiratory syndrome coronavirus-2, has led to worldwide interest in developing functional bioactive ingredients that act as immunomodulatory agents. In this study, we aimed to characterize Carica papaya extract and explore its potential as an immunomodulator by performing in vitro cell screening. Papaya leaf water extract (PLW) was found to significantly increase the levels of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) by upregulating inducible nitric oxide synthase and cyclo-oxygenase-2 activity, respectively. Additionally, PLW increased the production of tumor necrosis factor-α and interleukin 1β in RAW 264.7 cells. Furthermore, PLW activated the expression of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) but not that of p38 mitogen-activated protein kinase. These results indicate that PLW increased the production of NO, PGE 2 , and pro-inflammatory cytokines by activating the JNK and ERK pathways in macrophages, thus demonstrating immunomodulatory properties. Finally, high-performance liquid chromatography fingerprint analysis indicated the presence of rutin, narirutin, and ρ-coumaric acid in PLW (6.30, 119.76, and 47.25 ppm, respectively). Treating cells with these compounds at non-toxic concentrations had no effect on NO production. Taken together, these results suggest that PLW may have potential as an immunity-enhancing supplement.
This study analyzed the antioxidant activity, cell viability, and human skin primary irritation test using the hot-water extracts of the Syzygium samarangense. As a result of the recent warmer climate, tropical plants have flourished on Jeju Island, and S. samarangense is one of these plants known to have biological activities. In this study, the hot-water extract of S. samarangense leaf and branch was analyzed. Antioxidant activity was measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid)) assays, and the DMPD (dimethyl-4-phenylenediamine) radical scavenging activity, nitrite scavenging activity, ferrous-ion chelating activity, cupric reducing antioxidant capacity, reducing power assay, ferric reducing antioxidant power, total phenol content, and total flavonoid content were also measured. In addition, cell viability was measured by MTT assay in human keratinocyte cells (HaCaT), and the safety of the extract for use on the skin was evaluated in the human skin primary irritation test. The antioxidant activities, except DMPD radical scavenging activity and ferrous-ion chelating activity, were stronger in the branch extract than in leaf extract, and the total phenol and flavonoid contents were also higher in the branch extract. Slight irritation was observed in the human skin primary irritation test. However, it was possible to observe sufficient antioxidant capacity at a concentration lower than the concentration used in the irritation test; therefore, if the concentration of the extract is appropriately adjusted, this suggests that it is a possible natural material suitable for use in cosmetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.