Real-time monitoring of soil water content is of great significance to prevent many engineering accidents, such as landslide, water seepage of foundation dam and reduction of foundation bearing capacity. Smart aggregates (SAs) based on electromechanical impedance (EMI) technique have showed the excellent monitoring capability in various engineering applications, however, there are limited reports on the application in the monitoring of the soil water content. In this paper, the spherical smart aggregates (SSAs) based on the EMI technique were investigated in the monitoring of soil water content. Firstly, the SSAs were designed and fabricated by using the monolithic concrete encapsulation method, and their stable performance in air were evaluated and confirmed by testing and analyzing the impedance spectrum. Then, the fabricated SSAs were immersed into the water environment lasting for 28 days to ensure the stability under working conditions, such as the soil with high water content and the hydration process of early-age concrete. Finally, the monitoring experiments of soil water content were carried out based on the SSAs and the traditional SAs using the EMI method. The measured impedance signatures under different water contents in soil were quantified by three types of statistical indexes, including root mean square deviation (RMSD), mean absolute percentage deviation (MAPD), and correlation coefficient deviation (CCD). The experimental results show that compared to the traditional SAs, the SSAs are more sensitive and stable to monitor the soil water content.
For large-scale 3D seismic data, target-oriented reservoir imaging is more attractive than conventional full-volume migration, in terms of computation efficiency. Gaussian beam migration (GBM) is one of the most robust depth imaging method, which not only keeps the advantages of ray methods, such as high efficiency and flexibility, but also allows us to solve caustics and multipathing problems. But conventional Gaussian beam migration requires slant stack for prestack data, and ray tracing from beam center location to subsurface, which is not easy to be directly applied for target-oriented imaging. In this paper, we modify the conventional Gaussian beam migration scheme, by shooting rays from subsurface image points to receivers to implement wavefield back-propagation. This modification helps us to achieve a better subsurface illumination in complex structure and allows simple implementation for target reservoir imaging. Significantly, compared with the wavefield-based GBM, our method does not reconstruct the subsurface snapshots, which has higher efficiency. But the proposed method is not as efficient as the conventional Gaussian beam migration. Synthetic and field data examples demonstrate the validity and the target-oriented imaging capability of our method.
We propose a new time-domain viscoacoustic wave equation for simulating wave propagation in anelastic media. The new wave equation is derived by inserting the complex-valued phase velocity described by the Kjartansson attenuation model into the frequency-wavenumber domain acoustic wave equation. Our wave equation includes one second-order temporal derivative and two spatial variable-order fractional Laplacian operators. The two fractional Laplacian operators describe the phase dispersion and amplitude attenuation effects, respectively. To facilitate the numerical solution for the proposed wave equation, we use the arbitrary-order Taylor series expansion (TSE) to approximate the mixed domain fractional Laplacians and achieve the decoupling of the wavenumber and the fractional order. Then the proposed viscoacoustic wave equation can be directly solved using the pseudospectral method (PSM). We adopt a hybrid pseudospectral/finite-difference method (HPSFDM) to stably simulate wave propagation in arbitrarily complex media. We validate the high accuracy of the proposed approximate dispersion term and approximate dissipation term in comparison with the accurate dispersion term and accurate dissipation term. The accuracy of numerical solutions is evaluated by comparison with the analytical solutions in homogeneous media. Theory analysis and simulation results show that our viscoacoustic wave equation has higher precision than the traditional fractional viscoacoustic wave equation in describing constant- Q attenuation. For a model with Q < 10, the calculation cost for solving the new wave equation with TSE HPSFDM is lower than that for solving the traditional fractional-order wave equation with TSE HPSFDM under the high numerical simulation precision. Furthermore, we demonstrate the accuracy of HPSFDM in heterogeneous media by several numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.