To study the strengthening mechanism and effect underlying the reinforcement of a fractured rock mass with grouting, compressive shear tests were conducted with an RMT-150B rock mechanics test system. Prefabricated structural surfaces were strengthened with a new inorganic dual-liquid grouting material at five water–cement ratios (0.6–1.5). The effects of these water–cement ratios of the grouting on the deformation, strength, and failure characteristics of the prefabricated structural surface were analyzed. The results show that reinforcement with grouting significantly influenced the bearing capacity of the structural surface. The shear strength of the structure was significantly improved and the deformation resistance of the structural surface was enhanced. The shear stress–displacement curves, generated in compressive shear tests of the grouting-reinforced structures, were all nonlinear. The shearing process comprised three stages: elasticity, yield, and failure. Decreasing the water–cement ratio of the grouting material weakened the plasticity of the grouted structural surface and enhanced its brittleness. The deformation type changed from plastic slip to brittle shear. The shear strength, cohesion, and angle of internal friction of the grouting-reinforced structural surface increased with decreasing water–cement ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.