The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube-like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes, and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell-derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair.
Magnetic resonance (MR) tracking of magnetically labeled stem and progenitor cells is an emerging technology, leading to an urgent need for magnetic probes that can make cells highly magnetic during their normal expansion in culture. We have developed magnetodendrimers as a versatile class of magnetic tags that can efficiently label mammalian cells, including human neural stem cells (NSCs) and mesenchymal stem cells (MSCs), through a nonspecific membrane adsorption process with subsequent intracellular (non-nuclear) localization in endosomes. The superparamagnetic iron oxide nanocomposites have been optimized to exhibit superior magnetic properties and to induce sufficient MR cell contrast at incubated doses as low as 1 microg iron/ml culture medium. When containing between 9 and 14 pg iron/cell, labeled cells exhibit an ex vivo nuclear magnetic resonance (NMR) relaxation rate (1/T2) as high as 24-39 s-1/mM iron. Labeled cells are unaffected in their viability and proliferating capacity, and labeled human NSCs differentiate normally into neurons. Furthermore, we show here that NSC-derived (and LacZ-transfected), magnetically labeled oligodendroglial progenitors can be readily detected in vivo at least as long as six weeks after transplantation, with an excellent correlation between the obtained MR contrast and staining for beta-galactosidase expression. The availability of magnetodendrimers opens up the possibility of MR tracking of a wide variety of (stem) cell transplants.
Human pluripotent stem cells have the potential to provide comprehensive model systems for the earliest stages of human ontogenesis. To serve in this capacity, these cells must undergo a targeted, stepwise differentiation process that follows a normal developmental timeline. Here we demonstrate the ability of both human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells to meet these requirements for human retinogenesis. Upon differentiation, hESCs initially yielded a highly enriched population of early eye field cells. Thereafter, a subset of cells acquired features of advancing retinal differentiation in a sequence and time course that mimicked in vivo human retinal development. Application of this culture method to a human iPS cell line also generated retina-specific cell types at comparable times in vitro. Lastly, altering endogenous signaling during differentiation affected lineage-specific gene expression in a manner consistent with established mechanisms of early neural and retinal cell fate determination. These findings should aid in the investigation of the molecular events governing retinal specification from human pluripotent stem cells.
Functionally diversified neuronal populations have now been efficiently generated from human pluripotent stem cells (hPSCs). However, directed differentiation of hPSCs to functional astroglial subtypes remains elusive. In this study, hPSCs were successfully directed to nearly uniform populations of immature astrocytes in large quantities (>90% S100β+ and GFAP+). The immature human astrocytes exhibit similar gene expression patterns as primary astrocytes, display functional properties such as glutamate uptake and promotion of synaptogenesis, and become mature astrocytes by forming connections with blood vessels following transplantation into the mouse brain. Furthermore, hPSC-derived neuroepithelia, patterned to rostral-caudal and dorsal-ventral identities with the same morphogens used for neuronal subtype specification, generate immature astrocytes that carry distinct homeodomain transcription factors and display phenotypic differences. These human astroglial progenitors and immature astrocytes will be instrumental for studying astrocytes in brain development and function, for revealing their roles in disease processes, and for developing novel treatments for neurological disorders.
SUMMARYHuman pluripotent stem cells (hPSCs) have opened new opportunities for understanding human development, modeling disease processes and developing new therapeutics. However, these applications are hindered by low-efficiency and heterogeneity of target cell types differentiated from hPSCs, such as motor neurons (MNs), as well as our inability to maintain the potency of lineage committed progenitors. Here, by using a combination of small molecules that regulate multiple signaling pathways, we develop a method to guide human embryonic stem cells to a near-pure population (>95%) of motor neuron progenitors (MNPs) in 12 days, and an enriched population (>90%) of functionally mature MNs in an additional 16 days. More importantly, the MNPs can be expanded for at least 5 passages so that a single MNP can be amplified to 1×104. This method is reproducible in human induced pluripotent stem cells and is applied to model MNdegenerative diseases and in proof-of-principle drug screening assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.