Flavonoids, such as daidzein and genistein, present in dietary plants like soybean, have unique chemical properties with biological activity relevant to cancer. Many flavonoids and polyphenols, including resveratrol in red wine and epigallocatechin gallate in green tea, are known antioxidants. Some of these compounds have estrogenic (and antiestrogenic) activity and are commonly referred to as phytoestrogens. A yeast-based estrogen receptor (ER) reporter assay has been used to measure the ability of flavonoids to bind to ER and activate estrogen responsive genes. Recently, estrogenic compounds were also shown to trigger rapid, nongenomic effects. The molecular mechanisms, however, have not been completely detailed and little information exists regarding their relevance to cancer progression. As a preliminary step toward elucidating rapid phytoestrogen action on breast cancer cells, we investigated the effect of 17-beta estradiol (E2), genistein, daidzein and resveratrol on the activation status of signaling proteins that regulate cell survival and invasion, the cell properties underlying breast cancer progression. The effect of these estrogenic compounds on the activation, via phosphorylation, of Akt/protein kinase B (Akt) and focal adhesion kinase (FAK) were analyzed in ER-positive and -negative human breast cancer cell lines. E2, genistein and daidzein increased whereas resveratrol decreased both Akt and FAK phosphorylation in nonmetastatic ER-positive T47D cells. In metastatic ER-negative MDA-MB-231 cells, all estrogenic compounds tested increased Akt and FAK phosphorylation. The inhibitory action of resveratrol on cell survival and proliferation is ER dependent. Therefore, all estrogenic compounds tested, including resveratrol, may exert supplementary ER-independent nongenomic effects on cell survival and migration in breast cancer cells.
Recent developments in optical technologies have the potential to improve the speed and accuracy of screening and diagnosis of curable precancerous lesions and early cancer, thereby decreasing the costs of detection and management of epithelial malignancies. The development of molecular-specific contrast agents for markers of early neoplastic transformation could improve the detection and molecular characterization of premalignant lesions. In the oral cavity, epidermal growth factor receptor (EGFR) overexpression has been identified in early stages of premalignant lesions of the oral squamous cell carcinoma; therefore, real-time assessment of EGFR expression could serve as a biomarker for oral neoplasia. The purpose of our study was to develop a molecular-specific optical contrast agent targeted against EGFR for in vivo assessment of epithelial neoplasia using a monoclonal antibody and the far-red fluorescent dye, Alexa FluorÒ 660 streptavidin. In addition to demonstrating the specificity of the contrast agent for EGFR in cell lines, we document the ability to achieve penetration through 500 lm thick epithelial layers using multilayer tissue constructs and permeability-enhancing agents. Finally, using the fluorescence intensity of the contrast agent on fresh oral cavity tissue sections, we were able to distinguish abnormal from normal oral tissue. This contrast agent should have important clinical applications for use in conjunction with fluorescence spectroscopy or imaging (or both) to facilitate tumor detection and demarcation.
Recent developments in optical technologies have the potential to improve the speed and accuracy of screening and diagnosis of curable precancerous lesions and early cancer, thereby decreasing the costs of detection and management of epithelial malignancies. The development of molecular‐specific contrast agents for markers of early neoplastic transformation could improve the detection and molecular characterization of premalignant lesions. In the oral cavity, epidermal growth factor receptor (EGFR) overexpression has been identified in early stages of premalignant lesions of the oral squamous cell carcinoma; therefore, real‐time assessment of EGFR expression could serve as a biomarker for oral neoplasia. The purpose of our study was to develop a molecular‐specific optical contrast agent targeted against EGFR for in vivo assessment of epithelial neoplasia using a monoclonal antibody and the far‐red fluorescent dye, Alexa Fluor® 660 streptavidin. In addition to demonstrating the specificity of the contrast agent for EGFR in cell lines, we document the ability to achieve penetration through 500 μm thick epithelial layers using multilayer tissue constructs and permeability‐enhancing agents. Finally, using the fluorescence intensity of the contrast agent on fresh oral cavity tissue sections, we were able to distinguish abnormal from normal oral tissue. This contrast agent should have important clinical applications for use in conjunction with fluorescence spectroscopy or imaging (or both) to facilitate tumor detection and demarcation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.