Pc-pis is a novel piscidin-like antimicrobial polypeptide that was identified in Pseudosciaena crocea. Although active against most bacteria tested, Pc-pis was inactive against Aeromonas hydrophila and Pseudomonas aeruginosa. The Pc-pis analogue Pc-pis-His was designed by adding a histidine residue at the carboxyl terminal. Pc-pis-His demonstrated a more broad-spectrum and stronger antimicrobial activity against a representative set of microorganisms and more potent antiparasitic activity against Cryptocaryon irritans trophonts than Pc-pis. The stability assay revealed that Pc-pis-His was active against Staphylococcus aureus not only in acidic (pH 5.5–7.3) and relatively low concentration monovalent cation (0–160 mM NaCl) environments but also in alkaline (pH 7.5–9.5), divalent cation (1.25–160 mM MgCl2 and 1.25–40 mM CaCl2) and high concentration monovalent cation (320–2560 mM NaCl) environments, which indicates that the added histidine residue conferred better salt-, acid- and alkali-tolerance to Pc-pis-His. Pc-pis-His also possessed the desired heat-tolerance, which was reflected by the antimicrobial activity of the peptide after being boiled for 10–60 minutes. Hemolytic activity analysis revealed that Pc-pis-His at concentrations up to 6 µM exhibited no hemolysis against human erythrocytes, with 6 µM being a concentration that is highly active against most of the microorganisms tested, although the hemolytic activity of Pc-pis-His was enhanced compared to Pc-pis. These results provide a unique, reasonable basis for designing novel piscidins with potent, broad-spectrum and stable antimicrobial activity and new insight into the future development of piscidins as potential therapeutic agents against microbial and external protozoan parasite infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.