Paxillin is a 68-kDa focal adhesion protein that is phosphorylated on tyrosine residues in fibroblasts in response to transformation by v-src, treatment with platelet-derived growth factor, or cross-linking of integrins. Paxillin has been shown to have binding sites for the SH3 domain of Src and the SH2 domain of Crk in vitro and to coprecipitate with two other focal adhesion proteins, vinculin and focal adhesion kinase (p125fak). After preliminary studies showed that paxillin was a substrate for the hematopoietic oncogene p210BCR/ABL, we investigated the role of this protein in hematopoietic cell transformation and signal transduction. A full-length length cDNA encoding human paxillin was cloned, revealing multiple protein domains, including four tandem LIM domains, a proline-rich domain containing a consensus SH3 binding site, and three potential Crk-SH2 binding sites. The paxillin gene was localized to chromosome 12q24 by fluorescence in situ hybridization analysis. A chicken paxillin cDNA was also cloned and is predicted to encode a protein approximately 90% identical to human paxil-lin. Paxillin coprecipitated with p210BCR/ABL and multiple other cellular proteins in myeloid cell lines, suggesting the formation of multimeric complexes. In normal hematopoietic cells and myeloid cell lines, tyrosine phosphorylation of paxillin and coprecipitation with other cellular proteins was rapidly and transiently induced by interleukin-3 and several other hematopoietic growth factors. The predicted structure of paxillin implicates this molecule in protein-protein interactions involved in signal transduction from growth factor receptors and the BCR/ABL oncogene fusion protein to the cytoskeleton.
The tensin family member cten (C-terminal tensin like) is an Src homology 2 (SH2) and phosphotyrosine binding domain–containing focal adhesion molecule that may function as a tumor suppressor. However, the mechanism has not been well established. We report that cten binds to another tumor suppressor, deleted in liver cancer 1 (DLC-1), and the SH2 domain of cten is responsible for the interaction. Unexpectedly, the interaction between DLC-1 and the cten SH2 domain is independent of tyrosine phosphorylation of DLC-1. By site-directed mutagenesis, we have identified several amino acid residues on cten and DLC-1 that are essential for this interaction. Mutations on DLC-1 perturb the interaction with cten and disrupt the focal adhesion localization of DLC-1. Furthermore, these DLC-1 mutants have lost their tumor suppression activities. When these DLC-1 mutants were fused to a focal adhesion targeting sequence, their tumor suppression activities were significantly restored. These results provide a novel mechanism whereby the SH2 domain of cten-mediated focal adhesion localization of DLC-1 plays an essential role in its tumor suppression activity.
Tensin is a cytoplasmic phosphoprotein that localized to integrin-mediated focal adhesions. It binds to actin filaments and contains a phosphotyrosine-binding (PTB) domain, which interacts with the cytoplasmic tails of beta integrin. These interactions allow tensin to link actin filaments to integrin receptors. In addition, tensin has an Src Homology 2 (SH2) domain capable of interacting with tyrosine-phosphorylated proteins. Furthermore, several factors induce tyrosine phosphorylation of tensin. Thus, tensin functions as a platform for dis/assembly of signaling complexes at focal adhesions by recruiting tyrosine-phosphorylated signaling molecules through the SH2 domain, and also by providing interaction sites for other SH2-containing proteins. Analysis of knockout mice has demonstrated critical roles of tensin in renal function, muscle regeneration, and cell migration. Therefore, tensin and its downstream signaling molecules may be targets for therapeutic interventions in renal disease, wound healing and cancer.
The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.