Protein tyrosine phosphorylation accompanies the integrin-mediated cell to substratum adhesion, and is essential for the progression of G 1 /S phase of the cellcycle in normal ®broblasts. To examine how cellular protein tyrosine phosphatase (PTPase) activity is involved in regulating the adhesion-dependent protein tyrosine phosphorylation, we employed ®broblast cells bearing an active form of a protein tyrosine kinase (PTK), v-Src. We found that the v-Src induced tyrosine phosphorylation in certain proteins such as tensin, talin, p120, p80/85 (cortactin) and paxillin was greatly reduced when the cell to substratum adhesion was lost. Readhesion of the cells onto ®bronectin restored these phosphorylation events, while this was inhibited by the addition of RGD peptide. The kinase activity of the v-Src was unchanged by the loss of cell to substratum adhesion. On the other hand, treatment with a protein tyrosine phosphatase inhibitor vanadate caused much the same increase in the v-Src-mediated cellular tyrosine phosphorylation between cells adhered to the culture environments and cells kept in suspension. These data suggest that PTPase(s) appears to be more critical than the v-Src PTK in determining the cell adhesion-dependent protein tyrosine phosphorylation. Moreover, most of the protein tyrosine phosphorylations that are mediated by the v-Src but still dependent on the cell adhesion were indeed greatly reduced during an anchorage-independent growth of v-Src cells. Thus our data collectively indicate that the v-Src induced high level of tyrosine phosphorylation in certain types of proteins are still under the control of the integrin(s) or the cell adhesion to culture substratum, and most of these adhesion-regulated high levels of tyrosine phosphorylations are not essential for the transformed phenotype.