Magnetic/conducting polymeric hybrid core-shell typed zinc ferrite (ZnFe2O4)/poly(N-methyl aniline) (PMA) particles were fabricated and adopted as electrorheological (ER) and magnetorheological (MR) fluids, and their rheological properties were examined. Solvo-thermally synthesized ZnFe2O4 was coated with a conducting PMA through chemical oxidation polymerization. The size, shape, and chemical composition of the final core-shell shaped particles were scrutinized by scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. The crystal faces of the particles before and after coating with PMA were analyzed by X-ray diffraction. The ZnFe2O4/PMA products were suspended in silicone oil to investigate the rheological response to electro- or magnetic stimuli using a rotating rheometer. The shear stresses were analyzed using the CCJ equation. The dynamic yield stress curve was suitable for the conductivity mechanism with a slope of 1.5. When magnetic fields of various intensities were applied, the flow curve was analyzed using the Hershel–Bulkley equation, and the yield stresses had a slope of 1.5. Optical microscopy further showed that the particles dispersed in insulating medium form chain structures under electric and magnetic fields. Via this core-shell fabrication process, not only spherical conducting particles were obtained but also their dual ER and MR responses were demonstrated for their wide potential applications.
ZnFe2O4 particles initially synthesized through a simple solvothermal method were coated using polyindole (PIn) to prepare an actively controllable core-shell typed hybrid material under both electric and magnetic fields. An advantage of this process is not needing to add the stabilizers or surfactants commonly used for uniform coating when synthesizing core or shell-structured particles. The synthesized ZnFe2O4/PIn particles have a lower density than conventional magnetic particles and have suitable properties as electrorheological (ER) particles. The expected spherical shape of the particles was proven using both scanning electron microscopy and transmission electron microscopy. The chemical characterization was performed using Fourier-transform infrared spectroscopy and X-ray diffraction analysis. To analyze the rheological properties, a ZnFe2O4/PIn based suspension was prepared, and dynamic rheological measurements were performed for different electric field strengths using a rotary rheometer. Both dynamic and elastic yield stresses of the ER fluid had a slope of 1.5, corresponding to the conductivity model. Excellent ER effect was confirmed through rheological analysis, and the prepared ER fluid had a reversible and immediate response to repeated electric fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.