The production of short-chain fatty acids (SCFAs) from excess sludge was conducted in batch fermentation tests at different pH values ranging from 4.0 to 11.0. Experimental results of the impacts of different pHs on SCFAs production showed that during the first 8-day fermentation time the total SCFAs production at either pH 9.0 or pH 10.0 was much greater than that at acidic or neutral pH, and the maximal yield of 256.2 mg SCFAs-COD per gram of volatile suspended solids (VSS) was at pH 10.0, which was, respectively, over3 and 4times that at pH 5.0 and uncontrolled pH. Clearly, SCFAs production from excess sludge could be significantly improved and maintained stable by controlling the fermentation pH at 10.0. The composition of SCFAs and the percent distribution of individual SCFAs accounting for total SCFAs at pH 10.0 were analyzed. The SCFAs consisted of acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-valeric acids, and acetic acid was the most prevalent product with a fraction of 40-55%. Because the results of this study were differentfrom those of previous studies of SCFAs production, the mechanism of increased SCFAs production under alkaline conditions was investigated. Results showed that as soluble COD increased, more soluble protein was provided as the substrate for producing SCFAs. In addition, less or even no SCFAs were consumed by methanogens at alkaline pH, so the SCFAs production was therefore remarkably improved. Further investigation revealed thatthe formation of SCFA at pH 10.0 was dominated by biological effects rather than by chemical hydrolysis.
Abstract. Snowpits along a traverse from coastal East Antarctica to the summit of the ice sheet (Dome Argus) are used to investigate the post-depositional processing of nitrate (NO − 3 ) in snow. Seven snowpits from sites with accumulation rates between 24 and 172 kg m −2 a −1 were sampled to depths of 150 to 300 cm. At sites from the continental interior (low accumulation, < 55 kg m −2 a −1 ), nitrate mass fraction is generally > 200 ng g −1 in surface snow and decreases quickly with depth to < 50 ng g −1 . Considerably increasing values of δ 15 N of nitrate are also observed (16-461 ‰ vs. air N 2 ), particularly in the top 20 cm, which is consistent with predicted fractionation constants for the photolysis of nitrate. The δ 18 O of nitrate (17-84 ‰ vs. VSMOW (Vienna Standard Mean Ocean Water)), on the other hand, decreases with increasing δ 15 N, suggestive of secondary formation of nitrate in situ (following photolysis) with a low δ 18 O source. Previous studies have suggested that δ 15 N and δ 18 O of nitrate at deeper snow depths should be predictable based upon an exponential change derived near the surface. At deeper depths sampled in this study, however, the relationship between nitrate mass fraction and δ 18 O changes, with increasing δ 18 O of nitrate observed between 100 and 200 cm. Predicting the impact of post-depositional loss, and therefore changes in the isotopes with depth, is highly sensitive to the depth interval over which an exponential change is assumed. In the snowpits collected closer to the coast (accumulation > 91 kg m −2 a −1 ), there are no obvious trends detected with depth and instead seasonality in nitrate mass fraction and isotopic composition is found. In comparison to the interior sites, the coastal pits are lower in δ 15 N (−15-71 ‰ vs. air N 2 ) and higher in δ 18 O of nitrate (53-111 ‰ vs. VSMOW). The relationships found amongst mass fraction, δ 15 N, δ 18 O and 17 O ( 17 O = δ 17 O-0.52 × δ 18 O) of nitrate cannot be explained by local post-depositional processes alone, and are instead interpreted in the context of a primary atmospheric signal. Consistent with other Antarctic observational and modeling studies, the isotopic results are suggestive of an important influence of stratospheric ozone chemistry on nitrate formation during the cold season and a mix of tropospheric sources and chemistry during the warm season. Overall, the findings in this study speak to the sensitivity of nitrate isotopic composition to post-depositional processing and highlight the strength of combined use of the nitrogen and oxygen isotopes for a mechanistic understanding of this processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.