Multi-environment trials (METs) are essential in plant breeding programs to evaluate crop productivity and adaptability in diverse environments. In this study, we demonstrated the practical use of METs to evaluate grain yield and yield-related traits using 276 Korean rice cultivars, divided into three maturity groups (81 early-, 90 medium-, and 105 medium–late-maturing cultivars) grown in three regions (Jeonju, Suwon, and Miryang) and two planting seasons (early and regular planting) for two years. Due to the narrow genetic variability of the commercial cultivars, which are cultivated in relatively similar environmental conditions, genotype-by-environment interaction (GEI) effects were not statistically significant. However, genotype and environment evaluation using GGE biplot analysis exhibited distinct patterns of mega-environment formation, winning genotypes, ranking genotypes, discriminating power, and representativeness according to the differences in planting seasons and regions. Moreover, the simultaneous selection of stable high-performance genotypes using a weighted average of absolute scores from the singular-value decomposition of the matrix of BLUPs (WAASB) and a multi-trait stability index (MTSI) revealed six recommended genotypes each for early-maturing (Manho, Namil, Unkwang, Odae 1ho, Sinunbong 1ho, and Jonong) and medium-maturing (Sobi, Cheongdam, Shinbaeg, Boramchal, Mimyeon, and Saemimyeon) cultivars, and four genotypes for medium–late-maturing cultivars (Hanmauem, Dami, Baegseolchal, and Hangangchalbyeo). The winning genotypes of each trait can be used as parents to develop regional specialty cultivars by fine-tuning favorable traits, and recommended genotypes can be utilized as elite climate-resilient parents that can aid breeders in improving yield potential and stability across the planting seasons and regions.
Optimizing flowering time in crop plants is critical for maximizing yield and quality under target environments. While there is a wide range of heading date variation in Korean rice cultivars, the underlying gene mechanisms are unclear. Here, we sequenced the protein coding regions of Hd1, the major rice heading date gene, from 293 Korean rice cultivars and investigated the associations between Hd1 allele types and major agronomic traits under four different environments. There were four functional Hd1 and five nonfunctional hd1 alleles distributed among the 293 Korean rice cultivars. The effects of the Hd1 allele types were highly significant for days to heading in all four environments, explaining 51.4–65.8% of the phenotypic variation. On average, cultivars carrying nonfunctional hd1 headed 13.7 days earlier than those carrying functional Hd1. While the Hd1 allele types exhibited highly significant effects on culm length and protein content under all four environments, the differences between cultivars carrying Hd1 and hd1 were minimal. The effects of the Hd1 allele types on amylose content were significant in only one of the four environments. Our results provide useful information for fine-tuning rice heading dates by utilizing different Hd1 alleles in rice breeding programs.
Understanding the gene mechanisms controlling days to heading (DH) is important in rice breeding for adaption in the target environment. Using a recombinant inbred line population derived from the cross between two japonica rice cultivars, Koshihikari and Baegilmi, we identified three consistent quantitative trait loci (QTLs) for DH for two years, qDH3, qDH6, and qDH7 on chromosomes 3, 6, and 7, respectively. While Baegilmi contributed the allele for early heading at qDH6 and qDH7 with the additive effect of five days each, Koshihikari contributed the allele for early heading at qDH3 with the additive effect of three days. Notably, pyramiding two or more alleles for early heading at these QTLs accelerated heading effectively. Sequencing of Hd16, Hd1, and Ghd7, the previously known heading date genes underlying qDH3, qDH6, and qDH7, respectively, revealed that Baegilmi and Koshihikari carry different alleles at the three genes. Molecular markers were developed to screen the allelic compositions of the three genes among 295 Korean commercial rice cultivars. The results showed that few cultivars carry alleles for early heading at the three genes, highlighting that DH can be further accelerated and fine-tuned in breeding programs by combining the desirable alleles of Hd16, Hd1, and Ghd7.
Rice blast is one of the most serious agricultural diseases in the world. Rice blast can be managed using low nitrogen fertilizers, treatment with chemical fungicides, and the most effective resistant varieties. Many genetic resources have been investigated and used along with molecular markers to breed blast-resistant rice varieties. In this study, the genetic diversity of blast resistance genes using 27 functional/linked markers and rice blast incidence over three years was investigated in 296 Korean rice varieties. Blast incidence was determined using a 0-9 scoring system (0=no lesions to 9=dead leaves) in nursery tests. The blast incidence of 296 rice varieties showed a significant correlation between years (r>0.64, p<0.001). The 261 Japonica varieties showed blast resistance compared to 114 mid-late maturing varieties or 96 medium-maturing varieties. 35 Tongil-type varieties also exhibited greater resistance than Japonica varieties. DNA marker-trait association analysis was conducted using 27 DNA markers linked to 19 blast resistance genes. Twelve DNA markers showed significant associations with the average blast incidence over 3 years. The '9871.T7E' marker linked with Pi40 was strongly associated with blast disease, with a phenotypic variance of 24% over 3 years (p<0.001). Among the varieties harboring the Pi40 allele, early maturing varieties accounted for 87%. These results imply that the blast resistance of early maturing Korean varieties is associated with the Pi40 gene. These results will be beneficial for breeding blast-resistant rice in Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.