Summary
Alzheimer’s Disease (AD) is complicated by pro-oxidant intraneuronal Fe2+ elevation as well as extracellular Zn2+ accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn2+. Like ceruloplasmin, APP catalytically oxidizes Fe2+, loads Fe3+ into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP−/− mice are vulnerable to dietary iron exposure, which causes Fe2+ accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD post-mortem neocortex is inhibited by endogenous Zn2+, which we demonstrate can originate from Zn2+-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.
The interaction of the small (140 amino acid) protein, alpha-synuclein (alphaS), with Cu(2+) has been proposed to play a role in Parkinson's disease (PD). While some insight from truncated model complexes has been gained, the nature of the corresponding Cu(2+) binding modes in the full length protein remains comparatively less well characterized. This work examined the Cu(2+) binding of recombinant human alphaS using Electron Paramagnetic Resonance (EPR) spectroscopy. Wild type (wt) alphaS was shown to bind stoichiometric Cu(2+) via two N-terminal binding modes at physiological pH. An H50N mutation isolated one binding mode, whose g parallel, A parallel, and metal-ligand hyperfine parameters correlated well with a {NH2, N(-), beta-COO(-), H2O} mode previously identified in truncated model fragments. Electron spin-echo envelope modulation (ESEEM) studies of wt alphaS confirmed the second binding mode at pH 7.4 involved coordination of His50 and its g parallel and A parallel parameters correlated with either {NH2, N(-), beta-COO(-), N(Im)} or {N(Im), 2 N(-)} coordination observed in alphaS fragments. At pH 5.0, His50-anchored Cu(2+) binding was greatly diminished, while {NH2, N(-), beta-COO(-), H2O} binding persisted in conjunction with another two binding modes. Metal-ligand hyperfine interactions from one of these indicated a 1N3O coordination sphere, which was ascribed to a {NH2, CO} binding mode. The other was characterized by a spectrum similar to that previously observed for diethylpyrocarbonate-treated alphaS and was attributed to C-terminal binding centered on Asp121. In total, four Cu(2+) binding modes were identified within pH 5.0-7.4, providing a more comprehensive picture of the Cu(2+) binding properties of recombinant alphaS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.