We developed a multiplexed assay on a plasmonic-gold platform for measuring IgG and IgA antibodies and IgG avidity against both Zika virus (ZIKV) and dengue virus (DENV) infections. In contrast to IgM cross-reactivity, IgG and IgA antibodies against ZIKV nonstructural protein 1 (NS1) antigen were specific to ZIKV infection, and IgG avidity revealed recent ZIKV infection and past DENV-2 infection in patients in dengue-endemic regions. This assay could enable specific diagnosis of ZIKV infection over other flaviviral infections.
Accurate assays for the detection of antibodies to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) are essential for the control of the COVID-19 (coronavirus disease 2019) pandemic. Here, we report antibody and antibody-avidity assays, relying on near-infrared-fluorescence amplification by nanostructured plasmonic gold substrates, for the simultaneous detection of antibodies to the S1 subunit of the spike protein and to the receptor binding domain of SARS-CoV-2 in human serum and saliva, and for quantifying immunoglobulin avidities against coronavirus antigens from SARS-CoV-2, SARS-CoV-1 and the common-cold viruses OC43, HKU1, NL63 and 229E. The antibody assay detected immunoglobulin M in 87% (52 of 60) COVID-19-positive serum samples collected 6 or more days after symptom onset (and the immunoglobulins M and G in all 33 samples collected at least 15 days after symptom onset), and correctly classified 456 out of the 457 COVID-19-negative serum samples tested (424 of them collected before the pandemic, including 73 that were positive for other viruses). We used the antibody-avidity assay to study antibody-maturation patterns, anamnestic responses, and cross-immunity to the common-cold coronaviruses.
We report the use of the multiplexed T. gondii IgG, IgM test on plasmonic gold (pGOLD) platform in the setting of T. gondii infection by analyzing 244 sera from Nice, France (seroconversion, chronically infected, non-infected and newborns serum samples). Results were compared with commercial tests for the detection of IgG and IgM and their overall clinical final interpretation of a complete serological profile. The IgG and IgM test results on the platform were in agreement in, respectively, 95% and 93% with the commercial kits. When comparing with the overall clinical interpretation of the serological profile, the agreement reached 99.5% and 97.7% for IgG and IgM, respectively. This innovative pGOLD platform allows detection of both IgG and IgM simultaneously with only ~1 microliter of serum. The multiplexed IgG/IgM test on pGOLD platform is a strong candidate for its use in the massive screening programs for toxoplasmosis during pregnancy.
The outbreak and rapid spread of SARS-CoV-2 virus has led to a dire global pandemic with millions of people infected and ~ 400,000 deaths thus far. Highly accurate detection of antibodies for COVID-19 is an indispensable part of the effort to combat the pandemic 1,2 . Here we developed two-plex antibody detection against SARS-CoV-2 spike proteins 3 (the S1 subunit and receptor binding domain RBD) in human serum and saliva on a near-infrared nanoplasmonic gold (pGOLD) platform 4-8 . By testing nearly 600 serum samples, pGOLD COVID-19 assay achieved ~ 99.78 % specificity for detecting both IgG and IgM with 100 % sensitivity in sera collected > 14 days post disease symptom onset, with zero cross-reactivity to other diseases. Two-plex correlation analysis revealed higher binding of serum IgM to RBD than to S1. IgG antibody avidity toward multiple antigens were measured, shedding light on antibody maturation in COVID-19 patients and affording a powerful tool for differentiating recent from remote infections and identifying re-infection by SARS-CoV-2. Just as important, due to high analytical sensitivity, the pGOLD COVID-19 assay detected minute amounts of antibodies in human saliva, offering the first non-invasive detection of SARS-CoV-2 antibodies.
Messenger RNA (mRNA) based vaccines (Pfizer/BioNTech and Moderna) are highly effective at providing immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is uncertainty about the duration of immunity, evolution of IgG antibody levels and IgG avidity (an index of antibody-antigen binding strength), and differences in the immune responses between vaccines. Here we performed a prospective pilot study of 71 previously COVID-19 free subjects upon receiving both doses of either the Pfizer (n = 54) or Moderna (n = 17) mRNA vaccine. Anti-spike protein receptor binding domain (RBD) IgG antibodies were measured longitudinally using a qualitative finger stick MidaSpot rapid test at the point-of-care for initial screening and a quantitative dry blood spot-based pGOLD laboratory test over ~ four months post-vaccination. The average anti-RBD IgG antibody levels peaked at ~ two weeks after the second dose vaccine and declined thereafter, while antibody avidity increased, suggesting antibody maturation. Moderna vaccine recipients compared to Pfizer vaccine recipients exhibited higher side effect severity, higher peak anti-RBD IgG antibody levels, and higher avidity up to the 90 days period. Differences in antibody levels diminished at ~ 120 days post-vaccination, in line with the similar efficacy observed in the two vaccines. The MidaSpot rapid test detected 100% anti-SARS-CoV-2 RBD positivity for fully vaccinated subjects in both Pfizer and Moderna cohorts post full vaccination but turned negative greater than 90 days post-vaccination for 5.4% of subjects in the Pfizer cohort, whose quantitative anti-IgG were near the minimum levels of the group. Immune responses were found to vary greatly among vaccinees. Personalized longitudinal monitoring of antibodies could be necessary to assessing the immunity duration of vaccinated individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.