Rheumatoid arthritis (RA) patients have increased mortality and morbidity as a result of cardiovascular and cerebrovascular disease. What is not clear, however, is either how early accelerated atherosclerosis begins in RA or how soon risk factors must be rigorously controlled. Furthermore, given the strong relationship of vascular disease to RA mortality and of inflammation to the accelerated atherosclerosis associated with RA, it is important to evaluate indices that could serially and noninvasively quantify atherosclerotic disease in RA patients. The carotid intima-media thickness (cIMT) and plaque, measured by ultrasound, correlate closely with direct measurement of the local and systemic atherosclerotic burden. To investigate the presence of subclinical atherosclerosis in the early stages of RA, the cIMT and plaque were measured using carotid duplex scanning in 40 RA patients with disease duration < 12 months and in 40 control subjects matched for age, sex and established cardiovascular risk factors. Patients with RA had significantly higher average cIMT values and more plaque than the control group (cIMT 0.64 ± 0.13 mm versus 0.58 ± 0.09 mm, respectively; P = 0.03). In RA patients, the cIMT was predicted by age and C-reactive protein level at first presentation to the clinic (R2 = 0.64). C-reactive protein was associated with age of disease onset and history of smoking. Since inflammation has been shown to predate onset of clinical RA, the accelerated atherogenic process related to inflammation may precede RA symptom onset.
Dendritic cells are the major antigen-presenting and antigenpriming cells of the immune system. We review the antigenpresenting and proinflammatory roles played by dendritic cells in the initiation of rheumatoid arthritis (RA) and atherosclerosis, which complicates RA. Various signals that promote the activation of NF-κB and the secretion of TNF and IL-1 drive the maturation of dendritic cells to prime self-specific responses, and drive the perpetuation of synovial inflammation. These signals may include genetic factors, infection, cigarette smoking, immunostimulatory DNA and oxidized low-density lipoprotein, with major involvement of autoantibodies. We propose that the pathogenesis of RA and atherosclerosis is intimately linked, with the vascular disease of RA driven by similar and simultaneous triggers to NF-κB. IntroductionRheumatoid arthritis (RA) is characterized by systemic and synovial tissue chronic inflammation, and by bone and cartilage erosion and destruction [1]. Autoimmune diseases such as RA result from a process involving three distinct but related components -a break in self-tolerance, development of chronic inflammation in one or several organs, and, if ongoing, tissue destruction and its resultant detrimental effects.Dendritic cells (DC) are essential regulators of both innate and acquired arms of the immune system [2]. Their capacity to prime naïve T lymphocytes for helper and cytotoxic function distinguishes them from other antigen-presenting cells (APC). DC are also essential accessory cells in the generation of primary antibody responses, and are powerful enhancers of natural killer T cells and of natural killer cell cytotoxicity [3]. On the other hand, DC are also involved in the maintenance of tolerance to antigens. Along with the medullary thymic epithelial cells, DC contribute to thymic central tolerance and shaping of the T-cell repertoire by presenting endogenous self-antigens to T cells and deleting those T cells that exhibit strong autoreactivity [4]. In the periphery, resting DC delete autoreactive lymphocytes and expand the population of regulatory T cells. DC therefore have potential use in protective and therapeutic strategies for tolerance restoration in autoimmune diseases (for review see [5]). Dendritic cells play several roles in RADC are likely to contribute in several ways to the pathogenesis of RA. First, it is clear from autoimmune models that DC are able to prime MHC-restricted autoimmune responses in lymphoid organs [6][7][8]. Through this process, DC orchestrate the development of the autoantibody and chronic inflammatory pathology on which the clinical features of RA are based. Second, DC infiltrate synovial tissue and synovial fluid and here are able to take up, process and present antigen locally, contributing to disease perpetuation [9,10]. Animal models and histological evidence show that DC drive the generation of ectopic lymphoid tissue in inflammatory environments, probably including the synovium [8,11]. Furthermore DC, along with synoviocytes and macr...
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.