SUMMARYHPCTOOLKIT is an integrated suite of tools that supports measurement, analysis, attribution, and presentation of application performance for both sequential and parallel programs. HPCTOOLKIT can pinpoint and quantify scalability bottlenecks in fully optimized parallel programs with a measurement overhead of only a few percent. Recently, new capabilities were added to HPCTOOLKIT for collecting call path profiles for fully optimized codes without any compiler support, pinpointing and quantifying bottlenecks in multithreaded programs, exploring performance information and source code using a new user interface, and displaying hierarchical space-time diagrams based on traces of asynchronous call path samples. This paper provides an overview of HPCTOOLKIT and illustrates its utility for performance analysis of parallel applications.
No abstract
Dynamic information-flow tracking (DIFT) is useful for enforcing security policies, but rarely used in practice, as it can slow down a program by an order of magnitude. Static program analyses can be used to prove safe execution states and elide unnecessary DIFT monitors, but the performance improvement from these analyses is limited by their need to maintain soundness.In this paper, we present a novel optimistic hybrid analysis (OHA) to significantly reduce DIFT overhead while still guaranteeing sound results. It consists of a predicated whole-program static taint analysis, which assumes likely invariants gathered from profiles to dramatically improve precision. The optimized DIFT is sound for executions in which those invariants hold true, and recovers to a conservative DIFT for executions in which those invariants are false. We show how to overcome the main problem with using OHA to optimize live executions, which is the possibility of unbounded rollbacks. We eliminate the need for any rollback during recovery by tailoring our predicated static analysis to eliminate only safe elisions of noop monitors. Our tool, Iodine, reduces the overhead of DIFT for enforcing security policies to 9%, which is 4.4× lower than that with traditional hybrid analysis, while still being able to be run on live systems.
Garbage collection (GC) support for unmanaged languages can reduce programming burden in reasoning about liveness of dynamic objects. It also avoids temporal memory safety violations and memory leaks. Sound GC for weakly-typed languages such as C/C++, however, remains an unsolved problem. Current value-based GC solutions examine values of memory locations to discover the pointers, and the objects they point to. The approach is inherently unsound in the presence of arbitrary type casts and pointer manipulations, which are legal in C/C++. Such language features are regularly used, especially in low-level systems code. In this paper, we propose Dynamic Pointer Provenance Tracking to realize sound GC. We observe that pointers cannot be created out-of-thin-air, and they must have provenance to at least one valid allocation. Therefore, by tracking pointer provenance from the source (e.g., malloc) through both explicit data-flow and implicit control-flow, our GC has sound and precise information to compute the set of all reachable objects at any program state. We discuss several static analysis optimizations, that can be employed during compilation aided with profiling, to significantly reduce the overhead of dynamic provenance tracking from nearly 8× to 16% for well-behaved programs that adhere to the C standards. Pointer provenance based sound GC invocation is also 13% faster and reclaims 6% more memory on average, compared to an unsound value-based GC.
NullPointerExceptions (NPEs) are a key source of crashes in modern Java programs. Previous work has shown how such errors can be prevented at compile time via code annotations and pluggable type checking. However, such systems have been difficult to deploy on large-scale software projects, due to significant build-time overhead and / or a high annotation burden. This paper presents NullAway, a new type-based null safety checker for Java that overcomes these issues. NullAway has been carefully engineered for low overhead, so it can run as part of every build. Further, NullAway reduces annotation burden through targeted unsound assumptions, aiming for no false negatives in practice on checked code. Our evaluation shows that NullAway has significantly lower build-time overhead (1.15×) than comparable tools (2.8-5.1×). Further, on a corpus of production crash data for widely-used Android apps built with NullAway, remaining NPEs were due to unchecked third-party libraries (64%), deliberate error suppressions (17%), or reflection and other forms of post-checking code modification (17%), never due to NullAway's unsound assumptions for checked code. CCS CONCEPTS• Software and its engineering → Extensible languages; Compilers; Formal software verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.