Magnetorheological (MR) fluids belong to a class of controllable fluids, and the composition and concentration of its components govern its magnetorheological properties. In this study, an optimum particle loading (or mass fraction) and size of iron particles in MR fluid for use in a shear mode monotube MR damper were determined based on the damping force and off-state viscosity of synthesized MR fluid samples. Initially, the morphological and magnetic properties of carbonyl iron particles were characterized. Six MR fluid samples were prepared composed of combination of three different particle loadings and two sizes of iron particles. Magnetorheological tests were conducted on these samples to determine the flow curves at off-state and on-state magnetic field conditions. Herschel-Bulkley model was used for mathematical representation of flow curves at different magnetic fields and to determine their dynamic yield stress. Further, a shear mode monotube MR damper with accumulator was designed by using optimization technique for desired dynamic range and damping force. Magnetostatic analysis was performed to determine the magnetic field strength generated in the shear gap at different currents. The damping force was calculated for synthesized MR fluids based on their dynamic yield stress corresponding to the magnetic field strength in the shear gap. Analysis of variance was performed to analyse the significance of independent factors on the damping force and off-state viscosity of MRF. The optimal particle loading and size which yielded maximum damping force with minimum off-state viscosity were determined using a multi-objective genetic algorithm.
The change in rheological properties of smart materials like magnetorheological fluid when brought under the influence of a magnetic field can be utilized to develop magnetorheological devices where the output has to be continuously and quickly varied using electronic control interface. In the present study, magnetorheological fluid is synthesized and used as a smart fluid in a twin-tube magnetorheological damper operating in valve mode. The behavior of the magnetorheological fluid is experimentally characterized in a rheometer and mathematically modeled using Herschel–Bulkley model. The parameters of the Herschel–Bulkley model are expressed as polynomial functions of strength of the magnetic field in order to find the shear stress developed by the magnetorheological fluid at any given strength of the magnetic field applied. The magnetorheological damper, which was designed for application in a passenger van, is tested in the damper testing machine. The performance of the damper at different damper velocities and current supplied is studied. The range of values for the parameters of the experimental testing are chosen to emulate the actual conditions of operation in its intended application. Nondimensional analysis is performed, which links magnetorheological fluid rheological properties and geometrical parameters of magnetorheological damper design with the force developed by the damper. Finite element method magnetics is used to find the strength of the magnetic field at the fluid flow gap. Analytical methods are used to calculate the damper force developed due to the field-dependent yield stress and compared with experimental force values. The resulting dynamic range of the magnetorheological damper is also assessed.
Magnetorheological (MR) brakes, belonging to the class of electromagnetic brakes, have a potential to replace conventional hydraulic brakes owing to reversible, rapidly controllable torque characteristics. In this study, T-shaped rotor MR brake was considered due to their higher braking torque capability and compactness compared to other configurations of brake. Optimal design of the brake was performed considering brake rotor radius, rotor thickness, flange length, casing thickness, coil height and coil width. Magnetostatic analyses were performed for different combinations of parameters of the brake dimensions to compute the magnetic flux density generated in the MR fluid region and the torque ratio and mass were calculated. The optimum dimensions of the brake were determined based on maximization of torque ratio and minimization of mass of the brake using multi-objective Genetic algorithm optimization technique. Further, magnetostatic analyses of the T-rotor brake with optimal dimensions were performed and torque characteristics were compared with those obtained for brake with simple disk rotor. It was concluded that T-rotor brake produces higher braking torque compared to simple disk rotor type MR brake for similar dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.