A well-recorded Mw 7.8 megathrust earthquake occurred on 27 October 2012 under the Queen Charlotte terrace off the west coast of Haida Gwaii, western Canada. In this study, we supplement limited earlier seismic refraction work on the offshore velocity structure off Haida Gwaii with data from ocean bottom seismometers (OBS) operating between 6 December 2012 and 5 January 2013. The OBS recorded a portion of the aftershock sequence, and an active-source seismic survey was conducted in January 2013 to acquire seismic refraction data in the region of the Haida Gwaii earthquake across the Queen Charlotte terrace. P-wave velocity analyses using first-arrival tomography showed relatively shallow (2.0–3.0 km below seafloor) high-velocity material with values up to 4.0 km/s beneath the terrace. At the one OBS station seaward of the deformation front on the abyssal plain, refraction velocities of ~4.5 km/s indicated the top of the oceanic plate at ~1–2 km below the seafloor. At several OBS stations, converted shear-wave velocities were determined within the sediment cover using reflected arrivals. The S-wave velocities ranged from 0.5 to 1.5 km/s, and the corresponding P/S velocity ratio was between 3.0 and 4.2. The new refraction data confirm earlier interpretations of high-velocity material in the shallow terrace that may indicate fractured oceanic crustal material lies significantly above the location where a subducted slab is thought to occur under the terrace. Transpressive deformation of the Pacific plate may explain these observations.
The ongoing India‐Asia collision has led to the formation of the northern Himalayan gneiss domes belt in southern Tibet. The domes are the result of the ongoing convergence and were formed by geological processes that may include crustal thickening, metamorphism, partial melting, and exhumation of middle crustal rocks to the surface. A combination of compressional, extensional, and diapiric processes has been invoked to explain the formation and evolution of these domes. Differentiating among these competing hypotheses requires well‐defined geophysical images of the internal structure of the domes. The Mabja dome is the largest dome within the northern Himalayan gneiss domes belt. A 70‐km long deep seismic reflection profile across Mabja dome was acquired in 2016. The seismic data could provide new information about the structural elements beneath the domes to the depth of 25 Km. We address the structure of the Mabja dome by conducting an integrated analysis of shallow crustal velocity structure and a normal‐incidence seismic reflection image of deeper crust. Our work suggests that the Mabja dome is underlain by shear zones at depths of 10–15 km and two high‐velocity bodies at depths of 3 km possibly representing the eclogitic‐facies rocks or mafic intrusions. We propose that the dome formation may have been controlled by collision‐induced north‐south shortening expressed by thrust stacking of middle crustal rocks, which led to the doming of the upper‐crustal rocks. The proposed mechanism inferred for Mabja dome can be applied to interpret the widespread domes throughout the southern Tibet and other related structures in orogenic mountain belts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.