This review article expands on the previous one (Y. Jmeian and Z. El Rassi, Electrophoresis 2009, 30, 249–261) by reviewing pertinent literature in the period extending from early 2008 to present. As the previous review article, the present one is concerned with proteomic sample preparation (e.g., depletion of high abundance proteins, reduction of the protein dynamic concentration range, enrichment of a particular sub-proteome), and the subsequent chromatographic and/or electrophoretic pre-fractionation prior to peptide separation and identification by LC-MS/MS. This review article is distinguished from its first version published in Electrophoresis 2009, 30, 249–261 by expanding on capturing/enriching sub-glycoproteomics by lectin affinity chromatography. Ninety-eight papers published in the period extending from early 2008 to the present have been reviewed. By no means this review article is exhaustive, giving the fact that its aim is to give a concise treatment of the latest developments in the field.
In this study, a liquid-phase separation platform consisting of tandem lectin affinity chromatography was introduced for the selective capturing of sub-glycoproteomics that are affected in cancers, e.g. breast cancer. The platform is comprised of three monolithic columns with surface immobilised lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and Ricinus communis agglutinin-I (RCA-I). While WGA and Con A have specificities directed towards the core portion of N-glycans on the glycoprotein surface, RCA-I specifically interacts with the non-reducing terminal moieties of the outer chain structures of N-glycans. The effects of the order in which the three lectin columns were arranged in the tandem columns format were evaluated. The most suitable order proved to be WGA → Con A → RCA-I (denoted as WCR) as far as the number of captured proteins was concerned. The WCR tandem columns allowed the capture of 113 and 112 proteins from disease-free and breast cancer sera, respectively, corresponding to 75 and 65 non-redundant proteins, respectively. Using mass spectral count ratios and Q-Q plots yielded a panel of 23 non-redundant differentially expressed proteins (i.e. a panel of 23 candidate markers), which should in principle be more representative of a pathophysiological state than a single marker candidate.
An eumelanin-inspired core derived from the natural product, vanillin (vanilla bean extract) was utilized for the synthesis of eumelanin-inspired small molecules and polymer via Sonogashira cross coupling. The materials demonstrate that the methyl 4,7-dibromo-5,6-dimethoxy-N-methyl-1H-indole-2-carboxylate core can serve as a new building block for organic semiconductors.
A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the “cascading” of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of 8 DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome.
Combinatorial peptide ligand library (CPLL) was evaluated as an off line step to narrow the differences of protein concentration in human serum prior to the capturing of human fucome from disease-free and breast cancer sera by a multicolumn platform via lectin affinity chromatography (LAC) followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two monolithic lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) columns were utilized to capture the fucome, which was subsequently fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to tryptic digestion prior to LC-MS/MS analysis. AAL has a strong affinity towards core fucosylated N-glycans and has a weak binding towards fucose in the outer arm while LTA can bind to glycans having fucose present in the outer arm. The combined strategy consisting of the CPLL, multicolumn platform and LC-MS/MS analysis permitted the identification of the differentially expressed proteins (DEPs) in breast cancer serum yielding 58 DEPs in both the LTA and AAL fractions with 6 DEPs common to both lectins. 17 DEPs were of the low abundance type, 16 DEPs of the borderline abundance type, 4 DEPs of the medium abundance type and 15 DEPs of the high abundance type. The remaining 6 DEPs are of unknown concentration. Only proteins exhibiting 99.9% protein identification probability, 95% peptide identification probability, and a minimum of 5 unique peptides were considered in finding the DEPs via scatterplots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.