In recent years, concerns have been raised about the occurrence of active raw materials and pharmaceutical ingredients that may be present in water, including wastewater, in the pharmaceutical industry. Wastewater treatment methods are not enough to completely remove active pharmaceuticals and other waste; thus, this study aims to assess the use of a multiwall carbon nanotube after derivatization and magnetization as a new and renewable absorbent for removing ibuprofen from an aqueous medium. The adsorbents were prepared by first oxidizing a multiwall carbon nanotube and then deriving the oxidized product with hydroxyl amine (m-MWCNT–HA), hydrazine (m-MWCNT–HYD), and amino acid (m-MWCNT–CYS). Adsorbents were characterized by Raman spectroscopy, Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and TEM), Brunauer–Emmett–Teller surface area analysis (BET), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Batch adsorption studies were conducted to study the effects of pH, temperature, time, and initial concentration of the adsorbate. Adsorption isotherm, kinetics, and thermodynamics studies were also conducted. The results show that the optimal pH for nearly complete removal of Ibu in a short time at room temperature was 4 for three adsorbents. The adsorption followed the Langmuir isotherm model with pseudo-second-order kinetics. The percentage of removal of ibuprofen reached up to 98.4%, 93%, and 61.5% for m-MWCNT–CYS, m-MWCNT–HYD, and m-MWCNT–HA respectively. To the best of our knowledge, the grafted MWCNTs presented in this work comprise the first example in the literature of oxidized MWCNT modified with such functionalities and applied for ibuprofen removal.
The goal of this work was to develop polymer-based heterocycle for water purification from toxic pesticides such as difenoconazole. The polymer chosen for this purpose was cellulose nanocrystalline (CNC); two cellulose based heterocycles were prepared by crosslinking with 2,6-pyridine dicarbonyl dichloride (Cell-X), and derivatizing with 2-furan carbonyl chloride (Cell-D). The synthesized cellulose-based heterocycles were characterized by SEM, proton NMR, TGA and FT-IR spectroscopy. To optimize adsorption conditions, the effect of various variable such as time, adsorbent dose, pH, temperature, and difenoconazole initial concentration were evaluated. Results showed that, the maximum difenoconazole removal percentage was about 94.7%, and 96.6% for Cell-X and Cell-D, respectively. Kinetic and thermodynamic studies on the adsorption process showed that the adsorption of difenoconazole by the two polymers is a pseudo-second order and follows the Langmuir isotherm model. The obtained values of ∆G ° and ∆H suggest that the adsorption process is spontaneous at room temperature. The results showed that Cell-X could be a promising adsorbent on a commercial scale for difenoconazole. The several adsorption sites present in Cell-X in addition to the semi crown ether structure explains the high efficiency it has for difenoconazole, and could be used for other toxic pesticides. Monte Carlo (MC) and Molecular Dynamic (MD) simulation were performed on a model of Cell-X and difenoconazole, and the results showed strong interaction.
This study aims at determining the quantitative effect of pesticides including 2, 4-D dichlorphenoxy acetic acids, Paraquat, Atrazine (2-chloro-4-ethylamino-6-isopropylamino-striazine), and MCPP 2-(2-Methyl-4-chlorophenoxy) pro-panioic acid on groundwater quality due to agricultural in Jenin and Tulkarem, northern part of the West Bank. The concentrations of pesticides in Jenin was found to be higher than those in Tulkarem where the majority of the samples taken had concentration 10 µg/L. It is concluded that the contamination of the tested wells was due to pesticides and not wastewater disposal, since most of the samples were free from pathogenic indicators. Results revealed that using these wells for drinking purposes has a potentially high health risk. This is mainly due to the uncontrolled industrial and agricultural activity as well as the lack of monitoring. Concentrations of heavy metals including cadmium (Cd), lead (Pb), iron (Fe), zinc (Zn), chromium (Cr) and copper (Cu) were also quantitatively determined for the same period extending from April, 2004 to May, 2005. Concentrations of Pb and Cr in most of the tested wells in Tulkarem complied with the WHO guideline; while nitrate (NO3) and potassium (K) concentrations exceeded the permissible concentra-tions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.