Malnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene. The F2 populations derived from these crosses were genotyped using InDel marker specific to crtRB1. Severe marker segregation distortion was observed. Seventeen crtRB1 inbreds developed through marker-assisted pedigree breeding and seven inbreds generated using marker-assisted backcross breeding were characterized using 77 SSRs. Wide variation in gene diversity (0.08 to 0.79) and dissimilarity coefficient (0.28 to 0.84) was observed. The inbreds were grouped into three major clusters depicting the existing genetic diversity. The crtRB1-based inbreds possessed high β-carotene (BC: 8.72μg/g), β-cryptoxanthin (BCX: 4.58μg/g) and proA (11.01μg/g), while it was 2.35μg/g, 1.24μg/g and 2.97μg/g in checks, respectively. Based on their genetic relationships, 15 newly developed crtRB1-based inbreds were crossed with five testers (having crtRB1 gene) using line × tester mating design. 75 experimental hybrids with crtRB1 gene were evaluated over three locations. These experimental hybrids possessed higher BC (8.02μg/g), BCX (4.69μg/g), proA (10.37μg/g) compared to traditional hybrids used as check (BC: 2.36 μg/g, BCX: 1.53μg/g, proA: 3.13μg/g). Environment and genotypes × environment interaction had minor effects on proA content. Both additive and dominance gene action were significant for proA. The mean proportion of proA to total carotenoids (TC) was 44% among crtRB1-based hybrids, while 11% in traditional hybrids. BC was found to be positively correlated with BCX (r = 0.68) and proA (r = 0.98). However, no correlation was observed between proA and grain yield. Several hybrids with >10.0 t/ha grain yield with proA content >10.0 μg/g were identified. This is the first comprehensive study on development of diverse proA rich maize hybrids through marker-assisted pedigree breeding approach. The findings provides sustainable and cost-effective solution to alleviate vitamin-A deficiency.
Waxy maize rich in amylopectin has emerged as a preferred food. However, waxy maize is poor in lysine and tryptophan, deficiency of which cause severe health problems. So far, no waxy hybrid with high lysine and tryptophan has been developed and commercialized. Here, we combined recessive waxy1 (wx1) and opaque2 (o2) genes in the parental lines of four popular hybrids (HQPM1, HQPM4, HQPM5, and HQPM7) using genomics-assisted breeding. The gene-based markers, wx-2507F/RG and phi057 specific for wx1 and o2, respectively were successfully used to genotype BC1F1, BC2F1 and BC2F2 populations. Background selection with > 100 SSRs resulted in recovering > 94% of the recurrent parent genome. The reconstituted hybrids showed 1.4-fold increase in amylopectin (mean: 98.84%) compared to the original hybrids (mean: 72.45%). The reconstituted hybrids also showed 14.3% and 14.6% increase in lysine (mean: 0.384%) and tryptophan (mean: 0.102%), respectively over the original hybrids (lysine: 0.336%, tryptophan: 0.089%). Reconstituted hybrids also possessed similar grain yield (mean: 6248 kg/ha) with their original versions (mean: 6111 kg/ha). The waxy hybrids with high lysine and tryptophan assume great significance in alleviating malnutrition through sustainable and cost-effective means. This is the first report of development of lysine and tryptophan rich waxy hybrids using genomics-assisted selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.