This study investigates the effects of agricultural drought on crop yields, through integration of crop growth models and remote sensing observations. The soil moisture (SM) product from SM and Ocean Salinity (SMOS) mission obtained at 25 km was downscaled to a spatial resolution of 1 km, compatible with the crop models. The downscaling algorithm is based upon information theoretic learning and uses data-driven probabilistic relationships between high-resolution remotely sensed products that are sensitive to SM and in situ SM. The downscaled SM values are assimilated in the crop model using an Ensemble Kalman filter-based augmented state-vector technique that estimates states and parameters simultaneously. The downscaling and assimilation framework are implemented for predominantly agricultural region of the lower La-Plata Basin (LPB) in Brazil during two growing seasons. This rain-fed region was affected by agricultural drought in the second season, indicated by markedly lower precipitation compared to the first growing season. The downscaled SM was compared with the in situ SM at a validation site and the root mean square difference (RMSD) was . The crop yields estimated by the downscaling-assimilation framework were compared with those provided by the Companhia Nacional de Asastecimento (CONAB) and Instituto Brasileiro de Geografia e Estatistica (IBGE). The assimilated yields are improved during both seasons with increased improvement during the second season that was affected by agricultural drought. The differences between the assimilated and observed crop yields were 16.8% during the first growing season and 4.37% during the second season.
In this study, a novel machine learning algorithm is presented for disaggregation of satellite soil moisture (SM) based on self-regularized regressive models (SRRM) using high-resolution correlated information from auxiliary sources. It includes regularized clustering that assigns soft memberships to each pixel at fine-scale followed by a kernel regression that computes the value of the desired variable at all pixels. Coarse-scale remotely sensed SM were disaggregated from 10km to 1km using land cover, precipitation, land surface temperature, leaf area index, and in-situ observations of SM. This algorithm was evaluated using multi-scale synthetic observations in NC Florida for heterogeneous agricultural land covers. It was found that the root mean square error (RMSE) for 96% of the pixels was less than 0.02 m 3 /m 3 . The clusters generated represented the data well and reduced the RMSE by upto 40% during periods of high heterogeneity in land-cover and meteorological conditions. The Kullback Leibler divergence (KLD) between the true SM and the disaggregated estimates is close to 0, for both vegetated and baresoil landcovers. The disaggregated estimates were compared to those generated by the Principle of Relevant Information (PRI) method. The RMSE for the PRI disaggregated estimates is higher than the RMSE for the SRRM on each day of the season. The KLD of the disaggregated estimates generated by the SRRM is at least four orders of magnitude lower than those for the PRI disaggregated estimates, while the computational time needed was reduced by three times. The results indicate that the SRRM can be used for disaggregating SM with complex non-linear correlations on a grid with high accuracy.A version of this manuscript has been submitted to the IEEE c Transactions on Geoscience and Remote Sensing. S. Chakrabarti and J. Judge are with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.