Ovarian cancer is the most lethal gynecologic malignancy, and patient prognosis has not improved significantly over the last several decades. In order to improve therapeutic approaches and patient outcomes, there is a critical need for focused research towards better understanding of the disease. Recent findings have revealed that the tumor microenvironment plays an essential role in promoting cancer progression and metastasis. The tumor microenvironment consists of cancer cells and several different types of normal cells recruited and reprogrammed by the cancer cells to produce factors beneficial to tumor growth and spread. These normal cells present within the tumor, along with the various extracellular matrix proteins and secreted factors, constitute the tumor stroma and can compose 10–60% of the tumor volume. Cancer associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, and play a critical role in promoting many aspects of tumor function. This review will describe the various hypotheses about the origin of CAFs, their major functions in the tumor microenvironment in ovarian cancer, and will discuss the potential of targeting CAFs as a possible therapeutic approach.
Metastatic colonization involves paracrine/juxtacrine interactions with the microenvironment inducing an adaptive response through transcriptional regulation. However, the identities of transcription factors (TFs) induced by the metastatic microenvironment in ovarian cancer (OC) and their mechanism of action is poorly understood. Using an organotypic 3D culture model recapitulating the early events of metastasis, we identified ETS1 as the most upregulated member of the ETS family of TFs in metastasizing OC cells as they interacted with the microenvironment. ETS1 was regulated by p44/42 MAP kinase signaling activated in the OC cells interacting with mesothelial cells at the metastatic site. Human OC tumors had increased expression of ETS1, which predicted poor prognosis. ETS1 regulated OC metastasis both in vitro and in mouse xenografts. A combination of ChIP-seq and RNA-seq analysis and functional rescue experiments revealed FAK as the key transcriptional target and downstream effector of ETS1. Taken together, our results indicate that ETS1 is an essential transcription factor induced in OC cells by the microenvironment, which promotes metastatic colonization though the transcriptional upregulation of its target FAK.
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.