Tick saliva has pleiotropic properties that facilitate persistence of the arthropod upon the host. We now describe a feeding-inducible protein in Ixodes scapularis saliva, Salp15, that inhibits CD4(+) T cell activation. The mechanism involves the repression of calcium fluxes triggered by TCR ligation and results in lower production of interleukin-2. Salp15 also inhibits the development of CD4(+) T cell-mediated immune responses in vivo, demonstrating the functional importance of this protein. Salp15 provides a molecular basis for understanding the immunosuppressive activity of I. scapularis saliva and vector-host interactions.
Gingivo-buccal oral squamous cell carcinoma (OSCC-GB), an anatomical and clinical subtype of head and neck squamous cell carcinoma (HNSCC), is prevalent in regions where tobacco-chewing is common. Exome sequencing (n=50) and recurrence testing (n=60) reveals that some significantly and frequently altered genes are specific to OSCC-GB (USP9X, MLL4, ARID2, UNC13C and TRPM3), while some others are shared with HNSCC (for example, TP53, FAT1, CASP8, HRAS and NOTCH1). We also find new genes with recurrent amplifications (for example, DROSHA, YAP1) or homozygous deletions (for example, DDX3X) in OSCC-GB. We find a high proportion of C>G transversions among tobacco users with high numbers of mutations. Many pathways that are enriched for genomic alterations are specific to OSCC-GB. Our work reveals molecular subtypes with distinctive mutational profiles such as patients predominantly harbouring mutations in CASP8 with or without mutations in FAT1. Mean duration of disease-free survival is significantly elevated in some molecular subgroups. These findings open new avenues for biological characterization and exploration of therapies.
Rabbits or guinea pigs infested with Ixodes scapularis acquire resistance to tick bites, a phenomenon, known as tick immunity, that is partially mediated by antibody. To determine the salivary gland antigens that elicit antibodies in the host, an I. scapularis salivary gland cDNA expression library was probed with serum from tick-immune rabbits. Sera from sensitized rabbits strongly recognized 47 of 100,000 library clones in an antibody-screening assay. These 47 clones encoded 14 different I. scapularis genes, including a glutathione peroxidase homologue. Expression of these 14 genes in engorged tick salivary glands was confirmed by reverse-transcription polymerase chain reaction. The I. scapularis glutathione peroxidase homologue, named salp25D, was expressed in both unfed and fed nymphal salivary glands. Recombinant Salp25D was able to catalyze the reduction of hydrogen peroxide in the presence of reduced glutathione and glutathione reductase. These results categorize the prominent salivary gland proteins in I. scapularis and demonstrate the presence of a potent antioxidant in tick saliva.
Phosphorus is the second most critical macronutrient after nitrogen required for metabolism, growth, and development of plants. Despite the abundance of phosphorus in both organic and inorganic forms in the soil, it is mostly unavailable for plant uptake due to its complexation with metal ions in the soil. The use of agrochemicals to satisfy the demand for phosphorus to improve crop yield has led to the deterioration of the ecosystem and soil health, as well as an imbalance in the soil microbiota. Consequently, there is a demand for an alternate cost-effective and eco-friendly strategy for the biofortification of phosphorus. One such strategy is the application of phosphate-solubilizing microorganisms which can solubilize insoluble phosphates in soil by different mechanisms like secretion of organic acids, enzyme production, and excretion of siderophores that can chelate the metal ions and form complexes, making phosphates available for plant uptake. These microbes not only solubilize phosphates but also promote plant growth and crop yield by producing plant-growth-promoting hormones like auxins, gibberellins, and cytokinins, antibiosis against pathogens, 1-aminocyclopropane-1-carboxylic acid deaminase which enhances plant growth under stress conditions, improving plant resistance to heavy metal toxicity, and so on. Pyrroloquinoline quinine (pqq) and glucose dehydrogenase (gcd) are the representative genes for phosphorus solubilization in microorganisms. The content presented in this review paper focuses on different mechanisms and modes of action of phosphate-solubilizing microorganisms, their contribution to phosphorus solubilization, growth-promoting attributes in plants, and the molecular aspects of phosphorus solubilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.