In tropical/subtropical monsoon regions, accurate rice mapping is hampered by the following factors: (1) The frequent occurrence of clouds in such areas during the rice-growing season interferes strongly with optical remote sensing observations; (2) The agro-landscape in such regions is fragmented and scattered. Rice maps produced using low spatial resolution data cannot well delineate the detailed distribution of rice, while pixel-based mapping using medium and high resolutions has significant salt-and-pepper noise. (3) The cropping system is complex, and rice has a rotation schedule with other crops. Therefore, the Phenology-, Object- and Double Source-based (PODS) paddy rice mapping algorithm is implemented, which consists of three steps: (1) object extraction from multi-temporal 10-m Sentinel-2 images where the extracted objects (fields) are the basic classification units; (2) specifying the phenological stage of transplanting from Savitzky–Golay filtered enhanced vegetation index (EVI) time series using the PhenoRice algorithm; and (3) the identification of rice objects based on flood signal detection from time-series microwave and optical signals of the Sentinel-1/2. This study evaluated the potential of the combined use of the Sentinel-1/2 mission on paddy rice mapping in monsoon regions with the Hangzhou-Jiaxin-Huzhou (HJH) plain in China as the case study. A cloud computing approach was used to process the available Sentinel-1/2 imagery from 2019 and MODIS images from 2018 to 2020 in the HJH plain on the Google Earth Engine (GEE) platform. An accuracy assessment showed that the resultant object-based paddy rice map has a high accuracy with a producer (user) accuracy of 0.937 (0.926). The resultant 10-m paddy rice map is expected to provide unprecedented detail, spatial distribution, and landscape patterns for paddy rice fields in monsoon regions.
Knowledge about the spatial-temporal pattern of cropland abandonment is the premise for the management of abandoned croplands. Traditional mapping approaches of abandoned croplands usually utilize a multi-date classification-based land cover change trajectory. It requires quality training samples for land cover classification at each epoch, which is challenging in regions of smallholder agriculture in the absence of high-resolution imagery. Facing these challenges, a theoretical model is proposed to recognize abandoned croplands based on post-abandonment secondary succession. It applies the continuous change detection and classification (CCDC) temporal segmentation algorithm to Landsat time series (1986~2021) to obtain disjoint segments, representing croplands’ status. The post-abandonment secondary succession showing a greening trend is recognized using NDVI-based harmonic analysis, so as to capture its preceding abandonment. This algorithm is applied to a mountainous area in southwest China, where cropland abandonments are widespread. Validation based on stratified random samples referenced by a vegetation index time series and satellite images shows that the detected abandoned croplands have user accuracy, producer accuracy and an F1 score ranging from 43% to 71%, with variation among abandonment year. The study area has a potential cropland extent of 22,294 km2, within which 9252 km2 of the cropland was abandoned. The three peak years of abandonment were 1994, 2000, and 2011. The algorithm is suitable to be applied to large-scale mapping due to its automatic manner.
Understanding the spatiotemporal dynamics of global 3D urban expansion over time is becoming increasingly crucial for achieving long-term development goals. In this study, we generated a global dataset of annual urban 3D expansion (1990–2010) using World Settlement Footprint 2015 data, GAIA data, and ALOS AW3D30 data with a three-step technical framework: (1) extracting the global constructed land to generate the research area, (2) neighborhood analysis to calculate the original normalized DSM and slope height of each pixel in the study area, and (3) slope correction for areas with a slope greater than 10° to improve the accuracy of estimated building heights. The cross-validation results indicate that our dataset is reliable in the United States(R2 = 0.821), Europe(R2 = 0.863), China(R2 = 0.796), and across the world(R2 = 0.811). As we know, this is the first 30-meter 3D urban expansion dataset across the globe, which can give unique information to understand and address the implications of urbanization on food security, biodiversity, climate change, and public well-being and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.