The US health care system is rapidly adopting electronic health records, which will dramatically increase the quantity of clinical data that are available electronically. Simultaneously, rapid progress has been made in clinical analytics--techniques for analyzing large quantities of data and gleaning new insights from that analysis--which is part of what is known as big data. As a result, there are unprecedented opportunities to use big data to reduce the costs of health care in the United States. We present six use cases--that is, key examples--where some of the clearest opportunities exist to reduce costs through the use of big data: high-cost patients, readmissions, triage, decompensation (when a patient's condition worsens), adverse events, and treatment optimization for diseases affecting multiple organ systems. We discuss the types of insights that are likely to emerge from clinical analytics, the types of data needed to obtain such insights, and the infrastructure--analytics, algorithms, registries, assessment scores, monitoring devices, and so forth--that organizations will need to perform the necessary analyses and to implement changes that will improve care while reducing costs. Our findings have policy implications for regulatory oversight, ways to address privacy concerns, and the support of research on analytics.
Sepsis is a leading cause of death in the United States, with mortality highest among patients who develop septic shock. Early aggressive treatment decreases morbidity and mortality. Although automated screening tools can detect patients currently experiencing severe sepsis and septic shock, none predict those at greatest risk of developing shock. We analyzed routinely available physiological and laboratory data from intensive care unit patients and developed "TREWScore," a targeted real-time early warning score that predicts which patients will develop septic shock. TREWScore identified patients before the onset of septic shock with an area under the ROC (receiver operating characteristic) curve (AUC) of 0.83 [95% confidence interval (CI), 0.81 to 0.85]. At a specificity of 0.67, TREWScore achieved a sensitivity of 0.85 and identified patients a median of 28.2 [interquartile range (IQR), 10.6 to 94.2] hours before onset. Of those identified, two-thirds were identified before any sepsis-related organ dysfunction. In comparison, the Modified Early Warning Score, which has been used clinically for septic shock prediction, achieved a lower AUC of 0.73 (95% CI, 0.71 to 0.76). A routine screening protocol based on the presence of two of the systemic inflammatory response syndrome criteria, suspicion of infection, and either hypotension or hyperlactatemia achieved a lower sensitivity of 0.74 at a comparable specificity of 0.64. Continuous sampling of data from the electronic health records and calculation of TREWScore may allow clinicians to identify patients at risk for septic shock and provide earlier interventions that would prevent or mitigate the associated morbidity and mortality.
IMPORTANCE Current Parkinson disease (PD) measures are subjective, rater-dependent, and assessed in clinic. Smartphones can measure PD features, yet no smartphone-derived rating score exists to assess motor symptom severity in real-world settings.OBJECTIVES To develop an objective measure of PD severity and test construct validity by evaluating the ability of the measure to capture intraday symptom fluctuations, correlate with current standard PD outcome measures, and respond to dopaminergic therapy. DESIGN, SETTING, AND PARTICIPANTSThis observational study assessed individuals with PD who remotely completed 5 tasks (voice, finger tapping, gait, balance, and reaction time) on the smartphone application. We used a novel machine-learning-based approach to generate a mobile Parkinson disease score (mPDS) that objectively weighs features derived from each smartphone activity (eg, stride length from the gait activity) and is scaled from 0 to 100 (where higher scores indicate greater severity). Individuals with and without PD additionally completed standard in-person assessments of PD with smartphone assessments during a period of 6 months. MAIN OUTCOMES AND MEASURESAbility of the mPDS to detect intraday symptom fluctuations, the correlation between the mPDS and standard measures, and the ability of the mPDS to respond to dopaminergic medication. RESULTSThe mPDS was derived from 6148 smartphone activity assessments from 129 individuals (mean [SD] age, 58.7 [8.6] years; 56 [43.4%] women). Gait features contributed most to the total mPDS (33.4%). In addition, 23 individuals with PD (mean [SD] age, 64.6 [11.5] years; 11 [48%] women) and 17 without PD (mean [SD] age 54.2 [16.5] years; 12 [71%] women) completed in-clinic assessments. The mPDS detected symptom fluctuations with a mean (SD) intraday change of 13.9 (10.3) points on a scale of 0 to 100. The measure correlated well with the Movement Disorder Society Unified Parkinson Disease's Rating Scale total (r = 0.81; P < .001) and part III only (r = 0.88; P < .001), the Timed Up and Go assessment (r = 0.72; P = .002), and the Hoehn and Yahr stage (r = 0.91; P < .001). The mPDS improved by a mean (SD) of 16.3 (5.6) points in response to dopaminergic therapy. CONCLUSIONS AND RELEVANCEUsing a novel machine-learning approach, we created and demonstrated construct validity of an objective PD severity score derived from smartphone assessments. This score complements standard PD measures by providing frequent, objective, real-world assessments that could enhance clinical care and evaluation of novel therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.