The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
Colorectal cancer is one of the most common cancers in the world. As part of its diagnosis, a histological analysis is often run on biopsy samples. Multispecral imagery taken from cancer tissues can be useful to capture more meaningful features. However, the resulting data is usually very large having a large number of varying feature types. This papers aims to investigate and compare the performances of multispectral imagery taken from colorectal biopsies using different techniques for texture feature extraction inclduing local binary patterns, Haraclick features and local intensity order patterns. Various classifiers such as Support Vector Machine and Random Forest are also investigated. The results show the superiority of multispectral imaging over the classical panchromatic approach. In the multispectral imagery's analysis, the local binary patterns combined with Support Vector Machine classifier gives very good results achieving an accuracy of 91.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.