Now-a-days there is significant discussion about patient-reported outcomes (PRO) in medical world. The following article covers almost all the areas of PRO including-their importance, important concepts for understanding of PRO, significance, ideal properties, types, development and evaluation of PRO instruments. It is useful for physicians, pharmacists and patients for the assessment and improvement of the therapy.
Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI.
SUMMARY Mitochondrial Ca2+ Uniporter (MCU)-dependent mitochondrial Ca2+ uptake is the primary mechanism for increasing matrix Ca2+ in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1, MCUR1, have severely impaired [Ca2+]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation and migration but elicited autophagy. These studies establish the existence of a MCU complex which assembles at the mitochondrial integral membrane and regulates Ca2+-dependent mitochondrial metabolism.
SUMMARY Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU has not been established. As an approach towards understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher-order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.
SUMMARY Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex however the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca2+ and ROS-induced PTP opening using RNAi based screening. Loss of SPG7 resulted in higher mitochondrial Ca2+, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca2+ and ROS stress. Biochemical analyses revealed that the PTP is a hetero-oligomeric complex composed of VDAC, SPG7 and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca2+ and ROS-induced ΔΨm depolarization and cell death. This study identifies a ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.