The transportation industry is transitioning from conventional Internal Combustion Engine Vehicles (ICVs) to Electric Vehicles (EVs) due to the depletion of fossil fuels and the rise in non-traditional energy sources. EVs are emerging as the new leaders in the industry. Some essential requirements necessary for the widespread adoption of EVs include sufficient charging stations with numerous chargers, less to no wait time before charging, quick charging, and better range. To enable a quicker transition from ICVs to EVs, commercial organizations and governments would have to put in a mammoth effort, given the low number of installed chargers in developing nations such as India. One solution to lower the waiting time is to have multiple vehicles charging simultaneously, which might involve charging two- and four-wheelers simultaneously, even though their battery voltage ratings differ. This paper begins by providing the details of the power sources for EV charging, the charging levels and connector types, along with the specifications of some of the commercial chargers. The necessity of AC-DC converters in EV charging systems is addressed along with the power quality concerns due to the increased penetration of EVs. Next, a review of the existing research and technology of isolated DC-DC converters for simultaneous charging of EV batteries is provided. Further, several potential isolated DC-DC converter topologies for simultaneous charging are described with their design and loss estimation. A summary of the existing products and projects with simultaneous charging features is provided. Finally, insight is given into the future of simultaneous charging.
One of the most promising alternate sources of energy is wind energy. Energy of the wind is converted to electrical energy in wind farms and is then connected to a weak distribution network to supply local loads. Most wind farms use induction generators for electricity generation. These induction generators draw excessive reactive power for their operation and this causes shortage of reactive power in the system and leads to voltage collapse. This problem is simulated on PSCAD/EMTDC platform. For static compensation, capacitor banks are used and for dynamic compensation, Static Var Compensators (SVCs) are used.
SummaryThe use of electric vehicles (EVs) has gained traction in recent years. With the widespread use of EVs in the future, the waiting time before charging will be high due to the use of slow chargers in developing countries. This work proposes a novel DC‐DC converter based on an isolated single‐ended primary inductor converter (SEPIC) and isolated Ćuk converter to enable simultaneous charging of batteries of low‐ and medium‐power EVs. The proposed converter operates without spikes in input and output currents, even during a sudden source disturbance. It can charge one battery at the output voltage level and simultaneously charge two batteries at half the output voltage. Simulation results for open‐loop and closed‐loop operations are provided to validate the converter operation and the simplicity of control. The proposed converter operation has been experimentally validated using a scaled‐down prototype by charging one 48 V lithium‐ion battery and then simultaneously charging two 24 V lithium‐ion batteries. The converter's response is provided to present the novelty and advantages of the proposed converter. The proposed converter uses fewer switches, diodes, inductors, and capacitors. The size of the system is reduced due to the high switching frequency operation of SiC devices. A low‐side gate driver is sufficient for driving the MOSFET, and the control is simple. The proposed converter offers a new and simple converter to charge multiple low‐ and medium‐power EV batteries of different ratings simultaneously with a low component count.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.