Named entity recognition is an extremely important and fundamental task of biomedical text mining. Biomedical named entities include mentions of proteins, genes, DNA, RNA, etc which often have complex structures, but it is challenging to identify and classify such entities. Machine learning methods like CRF, MEMM and SVM have been widely used for learning to recognize such entities from an annotated corpus. The identification of appropriate feature templates and the selection of the important feature values play a very important role in the success of these methods. In this paper, we provide a study on word clustering and selection based feature reduction approaches for named entity recognition using a maximum entropy classifier. The identification and selection of features are largely done automatically without using domain knowledge. The performance of the system is found to be superior to existing systems which do not use domain knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.